Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Asian-Australas J Anim Sci ; 33(11): 1732-1740, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32819079

RESUMO

OBJECTIVE: The objectives of this study were to investigate the genetic diversity, population structure and relatedness among the five chicken populations of Bangladesh using microsatellite markers. METHODS: A total of 161 individuals representing 5 chicken populations (non-descript Deshi [ND], naked neck [NN], hilly [HI], Aseel [AS], and red jungle fowl [JF]) were included in this study to investigate genetic diversity measures, population structure, genetic distance and phylogenetic relationships. Genotyping was performed using 16 selected polymorphic microsatellite markers distributed across 10 chromosomes. RESULTS: The average observed and expected heterozygosity, mean number of alleles and polymorphic information content were found to be 0.67±0.01, 0.70±0.01, 10.7 and 0.748, respectively in the studied populations. The estimated overall fixation index across the loci (F), heterozygote deficiency within (FIS) and among (FIT) chicken populations were 0.04±0.02, 0.05 and 0.16, respectively. Analysis of molecular variance analysis revealed 88.07% of the total genetic diversity was accounted for within population variation and the rest 11.93% was incurred with population differentiation (FST). The highest pairwise genetic distance (0.154) was found between ND and AS while the lowest distance was between JF and AS (0.084). Structure analysis depicted that the studied samples can be categorized into four distinct types or varieties (ΔK = 3.74) such as ND, NN, and HI where AS and JF clustered together as an admixed population. The Neighbor-Joining phylogenetic tree and discriminant analysis of principal component also showed close relatedness among three chicken varieties namely AS, HI, and JF. CONCLUSION: The results reflected that indigenous chicken of Bangladesh still possess rich genetic diversity but weak differentiation among the studied populations. This finding provides some important insight on genetic diversity measures that could support the designing and implementing of future breeding plans for indigenous chickens of Bangladesh.

2.
Animals (Basel) ; 14(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38998056

RESUMO

This study aimed to identify SNPs in the intron, exon, and UTR regions of the FASN, DGAT1, and PPARGC1A genes and to investigate their possible association with milk yield and composition traits in the riverine buffalo of Bangladesh. A total of 150 DNA samples from riverine buffalo were used for PCR amplification with five pairs of primers, followed by association studies using a generalized linear model in R. SNP genotyping was performed by direct sequencing of the respective amplicon. Traits analyzed included DMY, fat%, protein%, and SNF%. This study identified 8 SNPs in FASN (g.7163G>A and g.7271C>T), DGAT1 (g.7809C>T and g.8525C>T) and PPARGC1A (g.387642C>T, g.387758A>G, g.409354A>G, and g.409452G>A). Genotypic and allelic frequencies differed significantly for each SNP genotype and did not follow the Hardy-Weinberg principle (p < 0.01 or p < 0.001) in most cases. The g.7163G>A and g.7271C>T SNP genotypes of the FASN gene were significantly associated with milk fat%, with the latter also significantly associated with SNF%. The g.8525C>T polymorphism of the DGAT1 gene significantly affected protein% (p < 0.01). Additionally, PPARGC1A gene polymorphisms showed significant associations: g.387642C>T with fat% (p < 0.05); g.387758A>G and g.409354A>G with protein% (p < 0.001) and SNF% (p < 0.01); and g.409452G>A with DMY (p < 0.001), fat% (p < 0.05), and protein% (p < 0.01). Reconstructed haplotypes of the PPARGC1A gene were significantly associated (p < 0.01) with all traits except SNF%. These findings suggest that polymorphisms in these three candidate genes have the potential as molecular markers for improving milk yield and composition traits in the riverine buffalo of Bangladesh.

3.
Anim Biosci ; 37(5): 826-831, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419540

RESUMO

OBJECTIVE: The major histocompatibility complex in chicken demonstrates a great range of variations within varities, breeds, populations and that can eventually influence their immuneresponses. The preset study was conducted to understand the major histocompatibility complex-B (MHC-B) variability in five major populations of Bangladesh native chicken: Aseel, Hilly, Junglefowl, Non-descript Deshi, and Naked Neck. METHODS: These five major populations of Bangladesh native chicken were analyzed with a subset of 89 single nucleotide polymorphisms (SNPs) in the high-density MHC-B SNP panel and Kompetitive Allele-Specific polymerase chain reaction genotyping was applied. To explore haplotype diversity within these populations, the results were analyzed both manually and computationally using PHASE 2.1 program. The phylogenetic investigations were also performed using MrBayes program. RESULTS: A total of 136 unique haplotypes were identified within these five Bangladesh chicken populations, and only one was shared (between Hilly and Naked Neck). Phylogenetic analysis showed no distinct haplotype clustering among the five populations, although they were shared in distinct clades; notably, the first clade lacked Naked Neck haplotypes. CONCLUSION: The present study discovered a set of unique MHC-B haplotypes in Bangladesh chickens that could possibly cause varied immune reponses. However, further investigations are required to evaluate their relationships with global chicken populations.

5.
Front Genet ; 13: 847492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711941

RESUMO

It is known that throughout history and presently, taurine (Bos taurus) and indicine/zebu (Bos indicus) cattle were crossed with other bovine species (e.g., gayal, gaur, banteng, yak, wisent, and bison). Information on the role of interspecific hybridization to facilitate faster adaptation of the newly arrived domestic species to new environments is poorly known. Herein, we collected 266 samples of bovine species of the taurine, zebu, yak, and gaur from West Europe, Southwest China, Indian subcontinent, and Southeast Asia to conduct the principal component analysis (PCA), admixture, gene flow, and selection signature analyses by using SNPs distributed across the bovine autosomes. The results showed that the genetic relationships between the zebu, yak, and gaur mirrored their geographical origins. Three ancestral components of the European taurine, East Asian taurine, and Indian zebu were found in domestic cattle, and the bidirectional genetic introgression between the Diqing cattle and Zhongdian yak was also detected. Simultaneously, the introgressed genes from the Zhongdian yak to the Diqing cattle were mainly enriched with immune-related pathways, and the ENPEP, FLT1, and PIK3CA genes related to the adaptation of high-altitude hypoxia were detected. Additionally, we found the genetic components of the Zhongdian yak had introgressed into Tibetan cattle. The 30 selected genes were detected in Tibetan cattle, which were significantly enriched in the chemokine signaling pathway. Interestingly, some genes (CDC42, SLC39A2, and EPAS1) associated with hypoxia response were discovered, in which CDC42 and SLC39A2 played important roles in angiogenesis and erythropoiesis, and heart function, respectively. This result showed that genetic introgression was one of the important ways for the environmental adaptation of domestic cattle.

6.
Animals (Basel) ; 11(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34438837

RESUMO

Understanding the genetic basis of locally adapted indigenous cattle populations is essential to design appropriate strategies and programs for their genetic improvement and conservation. Here, we report genetic diversity measures, population differentiation, and structure of 218 animals sampled from six indicine cattle populations of Bangladesh. Animals were genotyped with Illumina Bovine SNP50K BeadChip along with genotyped data of 505 individuals included from 19 zebu and taurine breeds worldwide. The principal component analysis (PCA) showed clear geographic separation between taurine and indicine lineages where Bangladeshi indigenous cattle clustered with South Asian zebu populations. However, overlapped clusters in PCA, heterozygosity estimates, and Neighbor-Joining phylogenetic tree analysis revealed weak genetic differentiation among the indigenous cattle populations of Bangladesh. The admixture analysis at K = 5 and 9 suggests distinct genetic structure of the studied populations along with 1 to 4% of taurine ancestry. The effective population size suggested a limited pool of ancestors particularly for Sahiwal and North Bengal Grey cattle. In conclusion, these findings shed insights into the genetic architecture of six indigenous cattle populations of Bangladesh for the first time and suggested as distinct gene pools without potential admixture with zebu or taurine populations.

7.
Animals (Basel) ; 9(9)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533240

RESUMO

Previous studies demonstrated that polymorphisms in the µ-calpain (CAPN1) and calpastatin (CAST) genes had significant effects on meat tenderness in different cattle populations. The aim of this study was to validate the potential association of seven single nucleotide polymorphisms (SNPs) harbored in these two candidate genes with meat tenderness in the Longissimus thoracis (LT) and Semimembranosus (SM) muscles. A total of 1000 animals were genotyped using TaqMan SNP genotyping arrays, and the meat tenderness of two muscle (LT and SM at 7 days post-slaughter) was assessed based on Warner-Bratzler WBSF (WBSF) testing. We observed significant associations of the CAPN1:c.580T>C, CAPN1:c.658T>C and CAST:c.1985G>C polymorphisms (p < 0.05) with the WBSF values in the LT and SM muscles. Additive effects of the C allele in CAPN1:c.580T>C and CAST:c.1985G>C were associated with an increase of 0.16 and 0.15 kg, and 0.08 and 0.26 kg WBSF in the LT and SM, respectively; CAPN1:c.658T>C had negative effects on the WBSFs. Furthermore, six reconstructed haplotypes demonstrated significant associations with WBSF values (p < 0.05). In conclusion, the significant associations identified between the SNPs in CAPN1, CAST and WBSF values could be utilized in marker-assisted selection programs in order to improve the beef tenderness of Hanwoo cattle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA