Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 18(4): 276-282, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33471590

RESUMO

The extent of chlorine inactivation and sublethal injury of stationary-phase (STAT) and long-term survival-phase (LTS) cells of Shiga toxin-producing Escherichia coli (STEC) in vitro and in a lettuce postharvest wash model was investigated. Four STEC strains were cultured in tryptic soy broth supplemented with 0.6% (w/v) yeast extract (TSBYE; 35°C) for 24 h and 21 d to obtain STAT and LTS cells, respectively. Minimum bactericidal concentration (MBC) and dose-response assays were performed to determine chlorine's antibacterial efficacy against STAT and LTS cells. Chlorine solutions (pH 6.5) and romaine lettuce were each inoculated with STAT and LTS cells to obtain initial populations of ∼7.8 log colony-forming units (CFU)/mL. Survivors in chlorine solutions were determined after 30 s. Inoculated lettuce samples were held at 22°C ± 1°C for 2 h or 20 h and then exposed to chlorine (10-40 ppm) for 60 s. Survivors were enumerated on nonselective and selective agar media following incubation (35°C, 48 h). The MBC for STAT and LTS cells was 0.04 and 0.08 ppm, respectively. Following exposure (30 s) to chlorine at 2.5, 5.0, and 10 ppm, STAT cells were reduced to <1.0 log CFU/mL, whereas LTS survivors were at 5.10 (2.5 ppm), 3.71 (5.0 ppm), and 2.55 (10 ppm) log CFU/mL. At 20 and 40 ppm chlorine, greater log CFU reductions of STAT cells (1.64 and 1.85) were observed compared with LTS cells (0.94 and 0.83) after 2 h of cell contact with lettuce (p < 0.05), but not after 20 h. Sublethal injury in STEC after chlorine (40 ppm) treatment was lower in LTS compared with STAT survivors (p < 0.05). Compared with STAT cells, LTS cells of STEC seem to have higher chlorine tolerance as planktonic cells and as attached cells depending on cell contact time on lettuce. In addition, a higher percentage of LTS cells, compared with STAT cells, survive in a noninjured state after chlorine (40 ppm) treatment of lettuce.


Assuntos
Antibacterianos , Cloro/farmacologia , Desinfetantes/farmacologia , Lactuca/microbiologia , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Antibacterianos/farmacologia , Tolerância a Medicamentos , Microbiologia de Alimentos
2.
J Food Prot ; 84(2): 315-320, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33003201

RESUMO

ABSTRACT: Grocery stores handle fresh produce in large quantities daily. According to the Food and Drug Administration Food Code, food is to be stored at least 15 cm above the floor, and all foods shall be protected from any source of contamination or otherwise discarded. It is reported in the literature that dropped produce could be a potential source of microbial contamination. Both consumers and employees often drop produce on the floor and then place it back into a display case or bin, which could potentially serve as a source of contamination. This study aims to determine the bacterial transfer rate on different produce types when dropped for various contact times onto floor surfaces contaminated with Listeria monocytogenes. Apples, peaches, and romaine lettuce were dropped separately onto carpet and tile surfaces from a distance of 1 m and held for 5 s, 1 min, 10 min, 1 h, and 4 h. Results showed that transfer from all produce types occurred from both the carpet (10.56%) and tile (3.65%) surfaces. Still, percent transfer was not statistically significant among different times used in this study (P > 0.05). Dropped romaine lettuce had the most transfer (28.97%) from both the surfaces combined, followed by apples (8.80%) and peaches (7.32%) with minimal transfer. Even with a low transfer level, grocery stores should include signage to alert consumers not to pick up dropped produce and should train their employees accordingly.


Assuntos
Microbiologia de Alimentos , Listeria monocytogenes , Contagem de Colônia Microbiana , Pisos e Cobertura de Pisos , Contaminação de Alimentos/análise , Manipulação de Alimentos , Inocuidade dos Alimentos , Lactuca , Supermercados
3.
Food Res Int ; 103: 59-67, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389643

RESUMO

A continuous-flow UV reactor operating at 254nm wave-length was used to investigate inactivation of microorganisms including bacteriophage in coconut water, a highly opaque liquid food. UV-C inactivation kinetics of two surrogate viruses (MS2, T1UV) and three bacteria (E. coli ATCC 25922, Salmonella Typhimurium ATCC 13311, Listeria monocytogenes ATCC 19115) in buffer and coconut water were investigated (D10 values ranging from 2.82 to 4.54mJ·cm-2). A series of known UV-C doses were delivered to the samples. Inactivation levels of all organisms were linearly proportional to UV-C dose (r2>0.97). At the highest dose of 30mJ·cm-2, the three pathogenic organisms were inactivated by >5 log10 (p<0.05). Results clearly demonstrated that UV-C irradiation effectively inactivated bacteriophage and pathogenic microbes in coconut water. The inactivation kinetics of microorganisms were best described by log linear model with a low root mean square error (RMSE) and high coefficient of determination (r2>0.97). Models for predicting log reduction as a function of UV-C irradiation dose were found to be significant (p<0.05) with low RMSE and high r2. The irradiated coconut water showed no cytotoxic effects on normal human intestinal cells and normal mouse liver cells. Overall, these results indicated that UV-C treatment did not generate cytotoxic compounds in the coconut water. This study clearly demonstrated that high levels of inactivation of pathogens can be achieved in coconut water, and suggested potential method for UV-C treatment of other liquid foods. INDUSTRIAL RELEVANCE: This research paper provides scientific evidence of the potential benefits of UV-C irradiation in inactivating bacterial and viral surrogates at commercially relevant doses of 0-120mJ·cm-2. The irradiated coconut water showed no cytotoxic effects on normal intestinal and healthy mice liver cells. UV-C irradiation is an attractive food preservation technology and offers opportunities for horticultural and food processing industries to meet the growing demand from consumers for healthier and safe food products. This study would provide technical support for commercialization of UV-C treatment of beverages.


Assuntos
Cocos/microbiologia , Escherichia coli/efeitos da radiação , Manipulação de Alimentos/instrumentação , Microbiologia de Alimentos/instrumentação , Sucos de Frutas e Vegetais/microbiologia , Listeria monocytogenes/efeitos da radiação , Salmonella typhimurium/efeitos da radiação , Raios Ultravioleta , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cocos/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Desenho de Equipamento , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Sucos de Frutas e Vegetais/toxicidade , Levivirus/crescimento & desenvolvimento , Levivirus/efeitos da radiação , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/virologia , Listeriose/microbiologia , Listeriose/prevenção & controle , Intoxicação Alimentar por Salmonella/microbiologia , Intoxicação Alimentar por Salmonella/prevenção & controle , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/virologia , Fagos T/crescimento & desenvolvimento , Fagos T/efeitos da radiação , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA