Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202870

RESUMO

Deep learning has become a powerful tool for solving inverse problems in electromagnetic medical imaging. However, contemporary deep-learning-based approaches are susceptible to inaccuracies stemming from inadequate training datasets, primarily consisting of signals generated from simplified and homogeneous imaging scenarios. This paper introduces a novel methodology to construct an expansive and diverse database encompassing domains featuring randomly shaped structures with electrical properties representative of healthy and abnormal tissues. The core objective of this database is to enable the training of universal deep-learning techniques for permittivity profile reconstruction in complex electromagnetic medical imaging domains. The constructed database contains 25,000 unique objects created by superimposing from 6 to 24 randomly sized ellipses and polygons with varying electrical attributes. Introducing randomness in the database enhances training, allowing the neural network to achieve universality while reducing the risk of overfitting. The representative signals in the database are generated using an array of antennas that irradiate the imaging domain and capture scattered signals. A custom-designed U-net is trained by using those signals to generate the permittivity profile of the defined imaging domain. To assess the database and confirm the universality of the trained network, three distinct testing datasets with diverse objects are imaged using the designed U-net. Quantitative assessments of the generated images show promising results, with structural similarity scores consistently exceeding 0.84, normalized root mean square errors remaining below 14%, and peak signal-to-noise ratios exceeding 33 dB. These results demonstrate the practicality of the constructed database for training deep learning networks that have generalization capabilities in solving inverse problems in medical imaging without the need for additional physical assistant algorithms.


Assuntos
Aprendizado Profundo , Diagnóstico por Imagem , Radiografia , Fenômenos Eletromagnéticos , Eletricidade
2.
J Biomech ; 166: 112051, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503062

RESUMO

Measuring or estimating the forces acting on the human body during movement is critical for determining the biomechanical aspects relating to injury, disease and healthy ageing. In this study we examined whether quantifying whole-body motion (segmental accelerations) using a commercial markerless motion capture system could accurately predict three-dimensional ground reaction force during a diverse range of human movements: walking, running, jumping and cutting. We synchronously recorded 3D ground reaction forces (force instrumented treadmill or in-ground plates) with high-resolution video from eight cameras that were spatially calibrated relative to a common coordinate system. We used a commercially available software to reconstruct whole body motion, along with a geometric skeletal model to calculate the acceleration of each segment and hence the whole-body centre of mass and ground reaction force across each movement task. The average root mean square difference (RMSD) across all three dimensions and all tasks was 0.75 N/kg, with the maximum average RMSD being 1.85 N/kg for running vertical force (7.89 % of maximum). There was very strong agreement between peak forces across tasks, with R2 values indicating that the markerless prediction algorithm was able to predict approximately 95-99 % of the variance in peak force across all axes and movements. The results were comparable to previous reports using whole-body marker-based approaches and hence this provides strong proof-of-principle evidence that markerless motion capture can be used to predict ground reaction forces and therefore potentially assess movement kinetics with limited requirements for participant preparation.


Assuntos
Captura de Movimento , Corrida , Humanos , Fenômenos Biomecânicos , Fenômenos Mecânicos , Movimento
3.
Sci Rep ; 14(1): 5760, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459073

RESUMO

Stroke is a leading cause of death and disability worldwide, and early diagnosis and prompt medical intervention are thus crucial. Frequent monitoring of stroke patients is also essential to assess treatment efficacy and detect complications earlier. While computed tomography (CT) and magnetic resonance imaging (MRI) are commonly used for stroke diagnosis, they cannot be easily used onsite, nor for frequent monitoring purposes. To meet those requirements, an electromagnetic imaging (EMI) device, which is portable, non-invasive, and non-ionizing, has been developed. It uses a headset with an antenna array that irradiates the head with a safe low-frequency EM field and captures scattered fields to map the brain using a complementary set of physics-based and data-driven algorithms, enabling quasi-real-time detection, two-dimensional localization, and classification of strokes. This study reports clinical findings from the first time the device was used on stroke patients. The clinical results on 50 patients indicate achieving an overall accuracy of 98% in classification and 80% in two-dimensional quadrant localization. With its lightweight design and potential for use by a single para-medical staff at the point of care, the device can be used in intensive care units, emergency departments, and by paramedics for onsite diagnosis.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Humanos , Encéfalo/diagnóstico por imagem , Fenômenos Eletromagnéticos , Cabeça , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética
4.
Front Neurol ; 12: 765412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777233

RESUMO

Introduction: Electromagnetic imaging is an emerging technology which promises to provide a mobile, and rapid neuroimaging modality for pre-hospital and bedside evaluation of stroke patients based on the dielectric properties of the tissue. It is now possible due to technological advancements in materials, antennae design and manufacture, rapid portable computing power and network analyses and development of processing algorithms for image reconstruction. The purpose of this report is to introduce images from a novel, portable electromagnetic scanner being trialed for bedside and mobile imaging of ischaemic and haemorrhagic stroke. Methods: A prospective convenience study enrolled patients (January 2020 to August 2020) with known stroke to have brain electromagnetic imaging, in addition to usual imaging and medical care. The images are obtained by processing signals from encircling transceiver antennae which emit and detect low energy signals in the microwave frequency spectrum between 0.5 and 2.0 GHz. The purpose of the study was to refine the imaging algorithms. Results: Examples are presented of haemorrhagic and ischaemic stroke and comparison is made with CT, perfusion and MRI T2 FAIR sequence images. Conclusion: Due to speed of imaging, size and mobility of the device and negligible environmental risks, development of electromagnetic scanning scanner provides a promising additional modality for mobile and bedside neuroimaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA