Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452997

RESUMO

Embryonic diapause in mammals leads to a reversible developmental arrest. While completely halted in many species, European roe deer (Capreolus capreolus) embryos display a continuous deceleration of proliferation. During a 4-mo period, the cell doubling time is 2 to 3 wk. During this period, the preimplantation blastocyst reaches a diameter of 4 mm, after which it resumes a fast developmental pace to subsequently implant. The mechanisms regulating this notable deceleration and reacceleration upon developmental resumption are unclear. We propose that amino acids of maternal origin drive the embryonic developmental pace. A pronounced change in the abundance of uterine fluid mTORC1-activating amino acids coincided with an increase in embryonic mTORC1 activity prior to the resumption of development. Concurrently, genes related to the glycolytic and phosphate pentose pathway, the TCA cycle, and one carbon metabolism were up-regulated. Furthermore, the uterine luminal epithelial transcriptome indicated increased estradiol-17ß signaling, which likely regulates the endometrial secretions adapting to the embryonic needs. While mTORC1 was predicted to be inactive during diapause, the residual embryonic mTORC2 activity may indicate its involvement in maintaining the low yet continuous proliferation rate during diapause. Collectively, we emphasize the role of nutrient signaling in preimplantation embryo development. We propose selective mTORC1 inhibition via uterine catecholestrogens and let-7 as a mechanism regulating slow stem cell cycle progression.


Assuntos
Aminoácidos/metabolismo , Cervos/embriologia , Diapausa , Embrião de Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Blastocisto/citologia , Proliferação de Células , Microambiente Celular , Cervos/fisiologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Feminino , Perfilação da Expressão Gênica , Gravidez , Útero/metabolismo
2.
BMC Genomics ; 19(1): 590, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081835

RESUMO

BACKGROUND: The expression of microRNAs (miRNAs) is essential for the proper development of the mammalian embryo. A maternal exposure to endocrine disrupting chemicals during preimplantation bears the potential for transgenerational inheritance of disease through the epigenetic perturbation of the developing embryo. A comprehensive assembly of embryo-specific miRNAs and respective isoforms (isomiR) is lacking to date. We aimed at revealing the sex-specific miRNA expression profile of single porcine blastocysts developing in gilts orally exposed to exogenous estradiol-17 (E2). Therefore we analyzed the miRNA profile specifically focusing on isomiRs and potentially embryo-specific miRNAs. RESULTS: Deep sequencing of small RNA (small RNA-seq) result in the detection of miRNA sequences mapping to known and predicted porcine miRNAs as well as novel miRNAs highly conserved in human and cattle. A set of highly abundant miRNAs and a large number of rarely expressed miRNAs were identified by using a small RNA analysis pipeline, which was integrated into a novel Galaxy workflow specifically benefits incompletely annotated species. In particular, orthologue species information increased the total number of annotated miRNAs, while mapping to other non-coding RNAs avoided falsely annotated miRNAs. Neither the low nor the high dose of E2 treatment (10 and 1000 µ E2/kg body weight daily, respectively) affected the miRNA profile in blastocysts despite the distinct differential mRNA expression and DNA methylation found in previous studies. The high number of generated sequence reads enabled a comprehensive analysis of the isomiR repertoire showing various templated and non-templated modifications. Furthermore, potentially blastocyst-specific miRNAs were identified. CONCLUSIONS: In pre-implantation embryos, numerous distinct isomiRs were discovered indicating a high complexity of miRNA expression. Neither the sex of the embryo nor a maternal E2 exposure affected the miRNA expression profile of developing porcine blastocysts. The adaptation to the continuous duration of the E2 treatment might explain the lack of an effect.


Assuntos
Blastocisto/química , Estradiol/efeitos adversos , Exposição Materna/efeitos adversos , MicroRNAs/genética , Análise de Sequência de RNA/veterinária , Animais , Blastocisto/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Anotação de Sequência Molecular , Especificidade de Órgãos , Isoformas de RNA/genética , Fatores Sexuais , Suínos
3.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31353404

RESUMO

Next-generation sequencing technologies and the availability of an increasing number of mammalian and other genomes allow gene expression studies, particularly RNA sequencing, in many non-model organisms. However, incomplete genome annotation and assignments of genes to functional annotation databases can lead to a substantial loss of information in downstream data analysis. To overcome this, we developed Mammalian Annotation Database tool (MAdb, https://madb.ethz.ch) to conveniently provide homologous gene information for selected mammalian species. The assignment between species is performed in three steps: (i) matching official gene symbols, (ii) using ortholog information contained in Ensembl Compara and (iii) pairwise BLAST comparisons of all transcripts. In addition, we developed a new tool (AnnOverlappeR) for the reliable assignment of the National Center for Biotechnology Information (NCBI) and Ensembl gene IDs. The gene lists translated to gene IDs of well-annotated species such as a human can be used for improved functional annotation with relevant tools based on Gene Ontology and molecular pathway information. We tested the MAdb on a published RNA-seq data set for the pig and showed clearly improved overrepresentation analysis results based on the assigned human homologous gene identifiers. Using the MAdb revealed a similar list of human homologous genes and functional annotation results regardless of whether starting with gene IDs from NCBI or Ensembl. The MAdb database is accessible via a web interface and a Galaxy application.


Assuntos
Bases de Dados Genéticas , Ontologia Genética , Anotação de Sequência Molecular , Análise de Sequência de RNA , Animais , Humanos
4.
Mol Cell Endocrinol ; 430: 125-37, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27062901

RESUMO

There is growing evidence that early life exposure to endocrine disrupting chemicals might increase the risk for certain adult onset diseases, in particular reproductive health problems and hormone dependent cancers. Studies in rodents suggest that perinatal exposure to even low doses of estrogenic substances can cause adverse effects, including epigenetic reprogramming of the prostate and increased formation of precancerous lesions. We analyzed the effects of an in utero exposure to the strongest natural estrogen, estradiol-17ß, in a pig model. Two different low and one high dose of estradiol-17ß (0.05, 10 and 1000 µg/kg body weight/day) were orally applied to gilts during pregnancy and potential effects on the reproductive system of the offspring were analyzed. No significant effects on sperm vitality parameters and testes size were observed in adult boars. However, prenatal exposure to the high dose decreased absolute, but not relative weight of the testes in prepubertal piglets. RNA sequencing revealed significantly regulated genes of the prepubertal prostate, while testes and uteri were not affected. Notably, we found an increased prostate expression of CCDC80 and a decreased ADH1C expression in the low dose treatment groups. BGN and SPARC, two genes associated with prostate tumor progression, were as well more abundant in exposed animals. Strikingly, the gene body DNA methylation level of BGN was accordingly increased in the high dose group. Thus, while only prenatal exposure to a high dose of estrogen altered testes development and local DNA methylation of the prostate, even low dose exposure had significant effects on gene expression in the prostate of prepubertal piglet offspring. The relevance of these distinct, but subtle transcriptional changes following low dose treatment lacking a clear phenotype calls for further long-term investigations. An epigenetic reprogramming of the pig prostate due to prenatal estrogen cannot be neglected.


Assuntos
Epigênese Genética/efeitos dos fármacos , Estradiol/farmacologia , Efeitos Tardios da Exposição Pré-Natal/genética , Reprodução/genética , Sus scrofa/genética , Animais , Biglicano/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Feminino , Glicoproteínas/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Próstata/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Reprodução/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testículo/anatomia & histologia , Testículo/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA