Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 71(2): 245-258, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36106533

RESUMO

Fractalkine (FKN) is a membrane-bound chemokine that can be cleaved by proteases such as ADAM 10, ADAM 17, and cathepsin S to generate soluble fragments. Studies using different forms of the soluble FKN yield conflicting results in vivo. These observations prompted us to investigate the function and pharmacology of two commonly used isoforms of FKN, a human full-length soluble FKN (sFKN), and a human chemokine domain only FKN (cdFKN). Both are prevalent in the literature and are often assumed to be functionally equivalent. We observed that recombinant sFKN and cdFKN exhibit similar potencies in a cell-based cAMP assay, but binding affinity for CX3CR1 was modestly different. There was a 10-fold difference in potency between sFKN and cdFKN when assessing their ability to stimulate ß-arrestin recruitment. Interestingly, high concentrations of FKN, regardless of cleavage variant, were ineffective at reducing pro-inflammatory microglial activation and may induce a pro-inflammatory response. This effect was observed in mouse and rat primary microglial cells as well as microglial cell lines. The inflammatory response was exacerbated in aged microglia, which is known to exhibit age-related inflammatory phenotypes. We observed the same effects in Cx3cr1-/- primary microglia and therefore speculate that an alternative FKN receptor may exist. Collectively, these data provide greater insights into the function and pharmacology of these common FKN reagents, which may clarify conflicting reports and urge greater caution in the selection of FKN peptides for use in in vitro and in vivo studies and the interpretation of results obtained using these differing peptides.


Assuntos
Quimiocina CX3CL1 , Microglia , Camundongos , Ratos , Humanos , Animais , Idoso , Quimiocina CX3CL1/metabolismo , Microglia/metabolismo , Proteólise , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Linhagem Celular
2.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055033

RESUMO

The microtubule-associated protein tau pathologically accumulates and aggregates in Alzheimer's disease (AD) and other tauopathies, leading to cognitive dysfunction and neuronal loss. Molecular chaperones, like small heat-shock proteins (sHsps), can help deter the accumulation of misfolded proteins, such as tau. Here, we tested the hypothesis that the overexpression of wild-type Hsp22 (wtHsp22) and its phosphomimetic (S24,57D) Hsp22 mutant (mtHsp22) could slow tau accumulation and preserve memory in a murine model of tauopathy, rTg4510. Our results show that Hsp22 protected against deficits in synaptic plasticity and cognition in the tauopathic brain. However, we did not detect a significant change in tau phosphorylation or levels in these mice. This led us to hypothesize that the functional benefit was realized through the restoration of dysfunctional pathways in hippocampi of tau transgenic mice since no significant benefit was measured in non-transgenic mice expressing wtHsp22 or mtHsp22. To identify these pathways, we performed mass spectrometry of tissue lysates from the injection site. Overall, our data reveal that Hsp22 overexpression in neurons promotes synaptic plasticity by regulating canonical pathways and upstream regulators that have been characterized as potential AD markers and synaptogenesis regulators, like EIF4E and NFKBIA.


Assuntos
Encéfalo/metabolismo , Cognição , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Aprendizagem , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Tauopatias/etiologia , Tauopatias/metabolismo , Animais , Biomarcadores , Encéfalo/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo Energético , Expressão Gênica , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Fosforilação , Transdução de Sinais , Tauopatias/patologia , Transdução Genética , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198710

RESUMO

Microglial activity in the aging neuroimmune system is a central player in aging-related dysfunction. Aging alters microglial function via shifts in protein signaling cascades. These shifts can propagate neurodegenerative pathology. Therapeutics require a multifaceted approach to understand and address the stochastic nature of this process. Polyphenols offer one such means of rectifying age-related decline. Our group used mass spectrometry (MS) analysis to explicate the complex nature of these aging microglial pathways. In our first experiment, we compared primary microglia isolated from young and aged rats and identified 197 significantly differentially expressed proteins between these groups. Then, we performed bioinformatic analysis to explore differences in canonical signaling cascades related to microglial homeostasis and function with age. In a second experiment, we investigated changes to these pathways in aged animals after 30-day dietary supplementation with NT-020, which is a blend of polyphenols. We identified 144 differentially expressed proteins between the NT-020 group and the control diet group via MS analysis. Bioinformatic analysis predicted an NT-020 driven reversal in the upregulation of age-related canonical pathways that control inflammation, cellular metabolism, and proteostasis. Our results highlight salient aspects of microglial aging at the level of protein interactions and demonstrate a potential role of polyphenols as therapeutics for age-associated dysfunction.


Assuntos
Envelhecimento/fisiologia , Suplementos Nutricionais , Microglia/metabolismo , Polifenóis/farmacologia , Transdução de Sinais , Animais , Dieta , Ontologia Genética , Masculino , Microglia/efeitos dos fármacos , Proteoma/metabolismo , Ratos Endogâmicos F344 , Transdução de Sinais/efeitos dos fármacos
4.
J Neuroinflammation ; 17(1): 242, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799878

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most prevalent movement disorder characterized by up to 80% loss of dopamine (DA) neurons and accumulation of Lewy body deposits composed of α-synuclein (α-syn). Accumulation of α-syn is associated with microglial activation, leading to a pro-inflammatory environment linked with the pathogenesis of PD. Along with microglia, CD4 and CD8 T cells are observed in SNpc. The contribution of T-cells to PD development remains unclear with studies demonstrating that they may mediate neurodegeneration or act in a neuroprotective manner. METHODS: Here, we assessed the contribution of T cells to PD neurodegeneration using an adeno-associated virus (AAV) coding human wild-type α-syn or GFP injected into the substantia nigra pars compacta (SNpc) in T cell deficient (athymic nude) and T cell competent (heterozygous) rats. The rats were behaviorally assessed with cylinder test to test paw bias. Following behavior testing, brains were collected and analyzed for markers of dopamine neuron, microglial activation, T cells, and α-syn expression. RESULTS: Injection of AAV9-α-syn unilaterally into the SN of T cell competent rats resulted in a significant paw bias in comparison to the controls at 60 days post-injection. Conversely, T cell-deficient rats injected with AAV9-α-syn showed no deficit in paw bias. As expected, injected T cell competent rats demonstrated a significant increase in microglial activation (MHCII staining) as well as significant dopaminergic neuron loss. In contrast, the T cell-deficient counterparts did not show a significant increase in microglial activation or significant neuron loss compared to the control animals. We also observed CD4 and CD8 T cells in SNpc following microglial MHCII expression and dopaminergic neuron loss. The time course of T cell entry correlates with upregulation of MHCII and the peak loss of TH+ cells in the SNpc. CONCLUSION: These data demonstrate that T cell infiltration and microglial upregulation of MHCII are involved in α-synuclein-mediated DA neuron loss in this rat model of PD.


Assuntos
Microglia/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Linfócitos T/metabolismo , Regulação para Cima , alfa-Sinucleína/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Microglia/patologia , Neurônios/patologia , Doença de Parkinson/patologia , Ratos , Ratos Nus , Substância Negra/metabolismo , Substância Negra/patologia , Linfócitos T/patologia , alfa-Sinucleína/metabolismo
5.
J Neuroinflammation ; 17(1): 157, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410624

RESUMO

BACKGROUND: Fractalkine (CX3CL1; FKN) is a chemokine expressed by neurons that mediates communication between neurons and microglia. By regulating microglial activity, CX3CL1 can mitigate the damaging effects of chronic microglial inflammation within the brain, a state that plays a major role in aging and neurodegeneration. CX3CL1 is present in two forms, a full-length membrane-bound form and a soluble cleaved form (sFKN), generated by a disintegrin and metalloproteinase (ADAM) 10 or 17. Levels of sFKN decrease with aging, which could lead to enhanced inflammation, deficits in synaptic remodeling, and subsequent declines in cognition. Recently, the idea that these two forms of CX3CL1 may display differential activities within the CNS has garnered increased attention, but remains unresolved. METHODS: Here, we assessed the consequences of CX3CL1 knockout (CX3CL1-/-) on cognitive behavior as well as the functional rescue with the two different forms of CX3CL1 in mice. CX3CL1-/- mice were treated with adeno-associated virus (AAV) expressing either green fluorescent protein (GFP), sFKN, or an obligate membrane-bound form of CX3CL1 (mFKN) and then subjected to behavioral testing to assess cognition and motor function. Following behavioral analysis, brains were collected and analyzed for markers of neurogenesis, or prepared for electrophysiology to measure long-term potentiation (LTP) in hippocampal slices. RESULTS: CX3CL1-/- mice showed significant deficits in cognitive tasks for long-term memory and spatial learning and memory in addition to demonstrating enhanced basal motor performance. These alterations correlated with deficits in both hippocampal neurogenesis and LTP. Treatment of CX3CL1-/- mice with AAV-sFKN partially corrected changes in both cognitive and motor function and restored neurogenesis and LTP to levels similar to wild-type animals. Treatment with AAV-mFKN partially restored spatial learning and memory in CX3CL1-/- mice, but did not rescue long-term memory, or neurogenesis. CONCLUSIONS: These results are the first to demonstrate that CX3CL1 knockout causes significant cognitive deficits that can be rescued by treatment with sFKN and only partially rescued with mFKN. This suggests that treatments that restore signaling of soluble forms of CX3CL1 may be a viable therapeutic option for aging and disease.


Assuntos
Encéfalo/metabolismo , Quimiocina CX3CL1/metabolismo , Disfunção Cognitiva/metabolismo , Animais , Camundongos , Camundongos Knockout , Neurogênese/fisiologia , Isoformas de Proteínas
6.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751642

RESUMO

Misfolding, aggregation and accumulation of proteins are toxic elements in the progression of a broad range of neurodegenerative diseases. Molecular chaperones enable a cellular defense by reducing or compartmentalizing these insults. Small heat shock proteins (sHsps) engage proteins early in the process of misfolding and can facilitate their proper folding or refolding, sequestration, or clearance. Here, we evaluate the effects of the sHsp Hsp22, as well as a pseudophosphorylated mutant and an N-terminal domain deletion (NTDΔ) variant on tau aggregation in vitro and tau accumulation and aggregation in cultured cells. Hsp22 wild-type (WT) protein had a significant inhibitory effect on heparin-induced aggregation in vitro and the pseudophosphorylated mutant Hsp22 demonstrated a similar effect. When co-expressed in a cell culture model with tau, these Hsp22 constructs significantly reduced soluble tau protein levels when transfected at a high ratio relative to tau. However, the Hsp22 NTDΔ protein drastically reduced the soluble protein expression levels of both tau WT and tau P301L/S320F even at lower transfection ratios, which resulted in a correlative reduction of the triton-insoluble tau P301L/S320F aggregates.


Assuntos
Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Doenças Neurodegenerativas/genética , Proteínas tau/genética , Animais , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico Pequenas/genética , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia , Agregação Patológica de Proteínas/genética , Ligação Proteica/genética , Deficiências na Proteostase/genética
7.
J Neuroinflammation ; 15(1): 204, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30001722

RESUMO

BACKGROUND: Neuroinflammation is a common therapeutic target for traumatic brain injury (TBI) due to its contribution to delayed secondary cell death and has the potential to occur for years after the initial insult. Exosomes from adipose-derived stem cells (hASCs) containing the long noncoding RNA MALAT1 are a novel, cell-free regenerative approach to long-term recovery after traumatic brain injury (TBI) that have the potential to modulate inflammation at the genomic level. The long noncoding RNA MALAT1 has been shown to be an important component of the secretome of hASCs. METHODS: We isolated exosomes from hASC containing or depleted of MALAT1. The hASC-derived exosomes were then administered intravenously to rats following a mild controlled cortical impact (CCI). We followed the rats with behavior, in vivo imaging, histology, and RNA sequencing (RNA Seq). RESULTS: Using in vivo imaging, we show that exosomes migrate into the spleen within 1 h following administration and enter the brain several hours later following TBI. Significant recovery of function on motor behavior as well as a reduction in cortical brain injury was observed after TBI in rats treated with exosomes. Treatment with either exosomes depleted of MALAT1 or conditioned media depleted of exosomes showed limited regenerative effects, demonstrating the importance of MALAT1 in exosome-mediated recovery. Analysis of the brain and spleen transcriptome using RNA Seq showed MALAT1-dependent modulation of inflammation-related pathways, cell cycle, cell death, and regenerative molecular pathways. Importantly, our data demonstrates that MALAT1 regulates expression of other noncoding RNAs including snoRNAs. CONCLUSION: We demonstrate that MALAT1 in hASC-derived exosomes modulates multiple therapeutic targets, including inflammation, and has tremendous therapeutic potential for treatment of TBI.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Encefalite/tratamento farmacológico , Encefalite/etiologia , Exossomos/metabolismo , RNA Longo não Codificante/metabolismo , Regeneração/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Análise por Conglomerados , Modelos Animais de Doenças , Membro Anterior/fisiopatologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Transtornos Motores/etiologia , Força Muscular/efeitos dos fármacos , Força Muscular/fisiologia , Equilíbrio Postural/efeitos dos fármacos , RNA Longo não Codificante/genética , Ratos , Ratos Endogâmicos F344 , Regeneração/fisiologia , Fatores de Tempo
8.
J Neuroinflammation ; 14(1): 96, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28468668

RESUMO

BACKGROUND: Age is the primary risk factor for many diseases. As such, age is a critical co-factor for examination in order to understand the progression and potential intervention in disease progression. Studies examining both the phenotype and transcriptome of aged microglia demonstrated a propensity for the development of a pro-inflammatory phenotype. Less well studied is the concomitant blunting of anti-inflammatory aspects of microglial function with age which also impact plasticity and repair in the CNS. METHODS: This study utilizes mass spectrometry-based proteomics to compare primary microglia from young and aged animals. RESULTS: This study revealed alterations in three clusters of inter-related proteins. The three pathways were inflammatory signaling, mitochondrial function, and cellular metabolism. Analysis of these clusters identified the protein rapamycin-insensitive companion of mTOR (RICTOR), a component of the mTORC2 complex, as a novel upstream regulator of several biological functions that are altered with age and potentially linked to phenotype development. A decrease in mTORC2-dependent AKT S473 phosphorylation, as assessed by insulin growth factor (IGF) treatment, was observed in aged microglia. This novel finding was confirmed by genetic manipulation of the microglial cell line. BV2 cells with diminished RICTOR displayed a phenotype that was strikingly similar to that of aged microglia. This finding is particularly relevant as the mTOR pathway already has a number of pharmacological modulators used clinically. CONCLUSIONS: The results suggest that microglia from aged mice show changes in cellular metabolism and energy regulation that might underlie the alterations in inflammatory signaling. Modulation of one pathway identified in our bioinformatic analysis, RICTOR, may provide an avenue by which deleterious aspects of the aging microglia can be attenuated. If successful, this could mean potentially delaying or diminishing the progress of diseases for which progressive inflammation is involved.


Assuntos
Senescência Celular/fisiologia , Metabolismo Energético/fisiologia , Microglia/metabolismo , Mapas de Interação de Proteínas/fisiologia , Proteômica/métodos , Transcrição Gênica/fisiologia , Animais , Células Cultivadas , Ácidos Graxos/metabolismo , Alimentos , Glucose/metabolismo , Camundongos
9.
Mol Cell Proteomics ; 14(12): 3173-84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424600

RESUMO

Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Aminoácidos/química , Microglia/citologia , Proteômica/métodos , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Técnicas de Cultura de Células , Linhagem Celular , Regulação da Expressão Gênica , Marcação por Isótopo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo
10.
Mol Ther ; 23(1): 17-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25195598

RESUMO

In Parkinson's disease, α-synuclein is known to activate microglia and this activation has been proposed as one of the mechanisms of neurodegeneration. There are several signals produced by neurons that have an anti-inflammatory action on microglia, including CX3CL1 (fractalkine). We have shown that a soluble form of CX3CL1 is required to reduce neuron loss in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice and that fractalkine agonism can reduce neuron loss in a 6-hydroxydopamine lesion model. Here, we show that fractalkine can reduce α-synuclein-mediated neurodegeneration in rats. Rats that received fractalkine showed abrogated loss of tyrosine hydroxylase and Neu-N staining. This was replicated in animals where we expressed fractalkine from astrocytes with the glial fibrillary acid protein (GFAP) promoter. Interestingly, we did not observe a reduction in MHCII expression suggesting that soluble fractalkine is likely altering the microglial state to a more neuroprotective one rather than reducing antigen presentation.


Assuntos
Quimiocina CX3CL1/genética , Terapia Genética/métodos , Doença de Parkinson Secundária/terapia , Transtornos Parkinsonianos/terapia , alfa-Sinucleína/genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Apresentação de Antígeno , Astrócitos/metabolismo , Astrócitos/patologia , Quimiocina CX3CL1/agonistas , Quimiocina CX3CL1/metabolismo , Dependovirus/genética , Regulação da Expressão Gênica , Vetores Genéticos , Proteína Glial Fibrilar Ácida , Antígenos de Histocompatibilidade Classe II/genética , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Regiões Promotoras Genéticas , Ratos , Transdução de Sinais , Substância Negra/metabolismo , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA