Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 33(4): 5468-5481, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30676771

RESUMO

Lysyl oxidases (LOXs) play a central role in extracellular matrix remodeling during development and tumor growth and fibrosis through cross-linking of collagens and elastin. We have limited knowledge of the structure and substrate specificity of these secreted enzymes. LOXs share a conserved C-terminal catalytic domain but differ in their N-terminal region, which is composed of 4 repeats of scavenger receptor cysteine-rich (SRCR) domains in LOX-like (LOXL) 2. We investigated by X-ray scattering and electron microscopy the low-resolution structure of the full-length enzyme and the structure of a shorter form lacking the catalytic domain. Our data demonstrate that LOXL2 has a rod-like structure with a stalk composed of the SRCR domains and the catalytic domain at its tip. We detected direct interaction between LOXL2 and tropoelastin (TE) and also LOXL2-mediated deamination of TE. Using proteomics, we identified several allysines together with cross-linked TE peptides. The elastin-like material generated was resistant to trypsin proteolysis and displayed mechanical properties similar to mature elastin. Finally, we detected the codistribution of LOXL2 and elastin in the vascular wall. Altogether, these data suggest that LOXL2 could participate in elastogenesis in vivo and could be used as a means of cross-linking TE in vitro for biomimetic and cell-compatible tissue engineering purposes.-Schmelzer, C. E. H., Heinz, A., Troilo, H., Lockhart-Cairns, M.-P., Jowitt, T. A., Marchand, M. F., Bidault, L., Bignon, M., Hedtke, T., Barret, A., McConnell, J. C., Sherratt, M. J., Germain, S., Hulmes, D. J. S., Baldock, C., Muller, L. Lysyl oxidase-like 2 (LOXL2)-mediated cross-linking of tropoelastin.


Assuntos
Aminoácido Oxirredutases/metabolismo , Tropoelastina/metabolismo , Animais , Células CHO , Domínio Catalítico/fisiologia , Linhagem Celular , Colágeno/metabolismo , Cricetulus , Elastina/metabolismo , Matriz Extracelular/metabolismo , Humanos , Proteólise , Especificidade por Substrato/fisiologia
2.
J Mater Sci Mater Med ; 29(6): 77, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29845352

RESUMO

Hydrogels are very promising for tissue engineering as they provide scaffolds and a suitable microenvironment to control cell behavior and tissue regeneration. We used a patented method to obtain beads of pullulan/dextran cross-linked with sodium trimetaphosphate (STMP), that were already described for in vivo bone repair. The aim of this study was to provide a comparative analysis of microbeads made of polysaccharides prepared using three different STMP feeding ratio of 1.5, 2.25 or 3 % w/w. The morphology, swelling and biodegradability of these structures were assessed. Mesenchymal stem cells were also seeded to evaluate the cell organization onto the beads. We found that the amount of phosphorus resulting from the cross-linking was proportional to the introduced STMP concentration. An increase of cross-linking decreased the in vitro enzymatic degradability, and also decreased the swelling in PBS or water. The microstructures observed by SEM and confocal microscopy indicated that homogeneous spherical microbeads were obtained, except for the lower cross-linking ratio where the shapes were altered. Beads hydrated in PBS exhibited a mean diameter ranging from 400 to 550 µm with the decrease of STMP ratio. Cells adhered to the surface of microbeads even in the absence of protein coating. Cell viability studies revealed an increase in cell numbers over two weeks for the highest cross-linked beads, whereas the two lowest STMP concentrations induced a decrease of cell viability. Overall, this study demonstrated that pullulan/dextran hydrogels can be designed as microbeads with adjustable physicochemical and biological properties to fulfill requirements for tissue engineering approaches.


Assuntos
Reagentes de Ligações Cruzadas/química , Dextranos/química , Glucanos/química , Microesferas , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Adesão Celular , Linhagem da Célula , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Polifosfatos , Polissacarídeos/química , Solventes/química , Suínos , Temperatura
3.
Biomacromolecules ; 15(5): 1602-11, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24666097

RESUMO

The design of biomimetic coatings capable of improving the osseointegration of bone biomaterials is a current challenge in the field of bone repair. Toward this end, layer-by-layer (LbL) films composed of natural components are suitable candidates. Chondroitin sulfate A (CSA), a natural glycosaminoglycan (GAG), was used as the polyanionic component because it promotes osteoblast maturation in vivo. In their native state, GAG-containing LbL films are generally cytophobic because of their low stiffness. To stiffen our CSA-based LbL films, genipin (GnP) was used as a natural cross-linking agent, which is much less cytotoxic than conventional chemical cross-linkers. GnP-cross-linked films display an original combination of microscale topography and tunable mechanical properties. Structural characterization was partly based on a novel donor/acceptor Förster resonance energy transfer (FRET) couple, namely, FITC/GnP, which is a promising approach for further inspection of any GnP-cross-linked system. GnP-cross-linked films significantly promote adhesion, proliferation, and early and late differentiation of preosteoblasts.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sulfatos de Condroitina/farmacologia , Iridoides/química , Iridoides/farmacologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Materiais Biocompatíveis/síntese química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sulfatos de Condroitina/química , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Iridoides/síntese química , Microscopia de Força Atômica , Osteoblastos/citologia , Técnicas de Microbalança de Cristal de Quartzo , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Biomacromolecules ; 14(11): 3870-9, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24050436

RESUMO

A fibrin hydrogel at physiological concentration (5 mg/mL) was associated with polyvinyl alcohol (PVA) inside an interpenetrating polymer networks (IPN) architecture. Previously, PVA has been modified with methacrylate functions in order to cross-link it by free-radical polymerization. The fibrin network was synthesized by the enzymatic hydrolysis of fibrinogen by thrombin. The resulting self-supported materials simultaneously exhibit the properties of the fibrin hydrogel and those of the synthetic polymer network. Their storage modulus is 50-fold higher than that of the fibrin hydrogel and they are completely rehydratable. These materials are noncytotoxic toward human fibroblast and the fibrin present on the surface of PVAm-based IPNs favors cell development.


Assuntos
Materiais Biocompatíveis/química , Fibrina/química , Álcool de Polivinil/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Fibrina/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Prepúcio do Pênis/citologia , Prepúcio do Pênis/efeitos dos fármacos , Prepúcio do Pênis/metabolismo , Humanos , Hidrólise , Masculino , Tamanho da Partícula , Álcool de Polivinil/metabolismo , Álcool de Polivinil/farmacologia , Relação Estrutura-Atividade , Propriedades de Superfície , Trombina/metabolismo , Água/química , Água/metabolismo
5.
Bioengineering (Basel) ; 10(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38002381

RESUMO

INTRODUCTION: Guided bone regeneration (GBR) procedures require selecting suitable membranes for oral surgery. Pullulan and/or dextran-based polysaccharide materials have shown encouraging results in bone regeneration as bone substitutes but have not been used to produce barrier membranes. The present study aimed to develop and characterize pullulan/dextran-derived membranes for GBR. MATERIALS AND METHODS: Two pullulan/dextran-based membranes, containing or not hydroxyapatite (HA) particles, were developed. In vitro, cytotoxicity evaluation was performed using human bone marrow mesenchymal stem cells (hBMSCs). Biocompatibility was assessed on rats in a subcutaneous model for up to 16 weeks. In vivo, rat femoral defects were created on 36 rats to compare the two pullulan/dextran-based membranes with a commercial collagen membrane (Bio-Gide®). Bone repair was assessed radiologically and histologically. RESULTS: Both polysaccharide membranes demonstrated cytocompatibility and biocompatibility. Micro-computed tomography (micro-CT) analyses at two weeks revealed that the HA-containing membrane promoted a significant increase in bone formation compared to Bio-Gide®. At one month, similar effects were observed among the three membranes in terms of bone regeneration. CONCLUSION: The developed pullulan/dextran-based membranes evidenced biocompatibility without interfering with bone regeneration and maturation. The HA-containing membrane, which facilitated early bone regeneration and offered adequate mechanical support, showed promising potential for GBR procedures.

6.
J Biomed Mater Res A ; 109(10): 1840-1848, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33797182

RESUMO

Microbeads consisting of pullulan and dextran supplemented with hydroxyapatite have recently been developed for bone tissue engineering applications. Here, we evaluate the bone formation in two different preclinical models after injection of microbeads reconstituted with either saline buffer or autologous blood. Addition of saline solution or autologous blood to dried microbeads packaged into syringes allowed an easy injection. In the first rat bone defect model performed in the femoral condyle, microcomputed tomography performed after 30 and 60 days revealed an important mineralization process occurring around and within the core of the microbeads in both conditions. Bone volume/total volume measurements revealed no significant differences between the saline solution and the autologous blood groups. Histologically, osteoid tissue was evidenced around and in contact of the microbeads in both conditions. Using the sinus lift model performed in sheep, cone beam computed tomography revealed an important mineralization inside the sinus cavity for both groups after 3 months of implantation. Representative Masson trichrome staining images showed that bone formation occurs at the periphery and inside the microbeads in both conditions. Quantitative evaluation of the new bone formation displayed no significant differences between groups. In conclusion, reconstitution of microbeads with autologous blood did not enhance the regenerative capacity of these microbeads compared to the saline buffer group. This study is of particular interest for clinical applications in oral and maxillofacial surgery.


Assuntos
Sangue/metabolismo , Regeneração Óssea/fisiologia , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Durapatita/farmacologia , Polímeros/farmacologia , Solução Salina/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Implantes Experimentais , Microesferas , Ratos , Ovinos , Transplante Autólogo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA