Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 289(31): 21573-83, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24928505

RESUMO

Many pathogenic microorganisms have evolved hemoglobin-mediated nitric oxide (NO) detoxification mechanisms, where a globin domain in conjunction with a partner reductase catalyzes the conversion of toxic NO to innocuous nitrate. The truncated hemoglobin HbN of Mycobacterium tuberculosis displays a potent NO dioxygenase activity despite lacking a reductase domain. The mechanism by which HbN recycles itself during NO dioxygenation and the reductase that participates in this process are currently unknown. This study demonstrates that the NADH-ferredoxin/flavodoxin system is a fairly efficient partner for electron transfer to HbN with an observed reduction rate of 6.2 µM/min(-1), which is nearly 3- and 5-fold faster than reported for Vitreoscilla hemoglobin and myoglobin, respectively. Structural docking of the HbN with Escherichia coli NADH-flavodoxin reductase (FdR) together with site-directed mutagenesis revealed that the CD loop of the HbN forms contacts with the reductase, and that Gly(48) may have a vital role. The donor to acceptor electron coupling parameters calculated using the semiempirical pathway method amounts to an average of about 6.4 10(-5) eV, which is lower than the value obtained for E. coli flavoHb (8.0 10(-4) eV), but still supports the feasibility of an efficient electron transfer. The deletion of Pre-A abrogated the heme iron reduction by FdR in the HbN, thus signifying its involvement during intermolecular interactions of the HbN and FdR. The present study, thus, unravels a novel role of the CD loop and Pre-A motif in assisting the interactions of the HbN with the reductase and the electron cycling, which may be vital for its NO-scavenging function.


Assuntos
Hemoglobinas Anormais/metabolismo , Mycobacterium tuberculosis/metabolismo , Sequência de Bases , Primers do DNA , Transporte de Elétrons , Elétrons , Hemoglobinas Anormais/química , Hemoglobinas Anormais/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimologia , Oxirredução , Reação em Cadeia da Polimerase
2.
Bioorg Med Chem Lett ; 25(19): 4250-3, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26306982

RESUMO

The adamantane scaffold is found in several marketed drugs and in many investigational 11ß-HSD1 inhibitors. Interestingly, all the clinically approved adamantane derivatives are C-1 substituted. We demonstrate that, in a series of paired adamantane isomers, substitution of the adamantane in C-2 is preferred over the substitution at C-1 and is necessary for potency at human 11ß-HSD1. Furthermore, the introduction of an oxygen atom in the hydrocarbon scaffold of adamantane is deleterious to 11ß-HSD1 inhibition. Molecular modeling studies provide a basis to rationalize these features.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Adamantano/química , Adamantano/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oxigênio/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 23(24): 7607-17, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26596711

RESUMO

The structural and physicochemical properties of the adamantane nucleus account for its use as a chemical scaffold in multiple drugs. In the last years, we have developed new polycyclic scaffolds as surrogates of the adamantane group with encouraging results in multiple targets. As adamantane is a common structural feature in several 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) inhibitors, we have explored the ability of the 6,7,8,9,10,11-hexahydro-5H-5,9:7,11-dimethanobenzo[9]annulen-7-yl scaffold to act as a surrogate of the adamantane nucleus in a novel series of 11ß-HSD1 inhibitors. Of note, within this family of compounds one derivative is endowed with submicromolar 11ß-HSD1 inhibitory activity. Molecular modeling studies support the binding of the compounds to the active site of the enzyme. However, a fine tuning of the hydrophobicity of the size-expanded nucleus may be beneficial for the inhibitory potency.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Adamantano/análogos & derivados , Adamantano/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Adamantano/síntese química , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Humanos , Simulação de Dinâmica Molecular
4.
Nucleic Acids Res ; 41(16): 7972-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23814185

RESUMO

Efficient DNA repair is critical for cell survival and the maintenance of genome integrity. The homologous recombination pathway is responsible for the repair of DNA double-strand breaks within cells. Initiation of this pathway in bacteria can be carried out by either the RecBCD or the RecFOR proteins. An important regulatory player within the RecFOR pathway is the RecOR complex that facilitates RecA loading onto DNA. Here we report new data regarding the assembly of Deinococcus radiodurans RecOR and its interaction with DNA, providing novel mechanistic insight into the mode of action of RecOR in homologous recombination. We present a higher resolution crystal structure of RecOR in an 'open' conformation in which the tetrameric RecR ring flanked by two RecO molecules is accessible for DNA binding. We show using small-angle neutron scattering and mutagenesis studies that DNA binding does indeed occur within the RecR ring. Binding of single-stranded DNA occurs without any major conformational changes of the RecOR complex while structural rearrangements are observed on double-stranded DNA binding. Finally, our molecular dynamics simulations, supported by our biochemical data, provide a detailed picture of the DNA binding motif of RecOR and reveal that single-stranded DNA is sandwiched between the two facing oligonucleotide binding domains of RecO within the RecR ring.


Assuntos
Proteínas de Bactérias/química , DNA de Cadeia Simples/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA/química , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Deinococcus , Modelos Moleculares , Mutagênese , Conformação Proteica
5.
Biochim Biophys Acta ; 1834(9): 1957-67, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23583621

RESUMO

This study reports a comparative analysis of the topological properties of inner cavities and the intrinsic dynamics of non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. The two proteins belong to the 3/3 globin fold and have a sequence identity of about 60%. However, it is widely assumed that they have distinct physiological roles. In order to investigate the structure-function relationships in these proteins, we have examined the bis-histidyl and ligand-bound hexacoordinated states by atomistic simulations using in silico structural models. The results allow us to identify two main pathways to the distal cavity in the bis-histidyl hexacoordinated proteins. Nevertheless, a larger accessibility to small gaseous molecules is found in AHb2. This effect can be attributed to three factors: the mutation Leu35(AHb1)→Phe32(AHb2), the enhanced flexibility of helix B, and the more favorable energetic profile for ligand migration to the distal cavity. The net effect of these factors would be to facilitate the access of ligands, thus compensating the preference for the fully hexacoordination of AHb2, in contrast to the equilibrium between hexa- and pentacoordinated species in AHb1. On the other hand, binding of the exogenous ligand introduces distinct structural changes in the two proteins. A well-defined tunnel is formed in AHb1, which might be relevant to accomplish the proposed NO detoxification reaction. In contrast, no similar tunnel is found in AHb2, which can be ascribed to the reduced flexibility of helix E imposed by the larger number of salt bridges compared to AHb1. This feature would thus support the storage and transport functions proposed for AHb2. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Proteínas de Arabidopsis/química , Hemoglobinas/química , Histidina/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica
6.
Biochim Biophys Acta ; 1834(9): 1711-21, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23624263

RESUMO

Nitrophorins (NPs) are nitric oxide (NO)-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. Though NP7 exhibits a large sequence resemblance with other NPs, two major differential features are the ability to interact with negatively charged cell surfaces and the presence of a specific N-terminus composed of three extra residues (Leu1-Pro2-Gly3). The aim of this study is to examine the influence of the N-terminus on the ligand binding, and the topological features of inner cavities in closed and open states of NP7, which can be associated to the protein structure at low and high pH, respectively. Laser flash photolysis measurements of the CO rebinding kinetics to NP7 and its variant NP7(Δ1-3), which lacks the three extra residues at the N-terminus, exhibit a similar pattern and support the existence of a common kinetic mechanism for ligand migration and binding. This is supported by the existence of a common topology of inner cavities, which consists of two docking sites in the heme pocket and a secondary site at the back of the protein. The ligand exchange between these cavities is facilitated by an additional site, which can be transiently occupied by the ligand in NP7, although it is absent in NP4. These features provide a basis to explain the enhanced internal gas hosting capacity found experimentally in NP7 and the absence of ligand rebinding from secondary sites in NP4. The current data allow us to speculate that the processes of docking to cell surfaces and NO release may be interconnected in NP7, thereby efficiently releasing NO into a target cell. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.


Assuntos
Monóxido de Carbono/metabolismo , Hemeproteínas/metabolismo , Simulação de Dinâmica Molecular , Mutação/genética , Óxido Nítrico/metabolismo , Rhodnius/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais , Cristalografia por Raios X , Hemeproteínas/química , Hemeproteínas/genética , Cinética , Lipocalinas/química , Lipocalinas/metabolismo , Modelos Moleculares , Fotólise , Conformação Proteica , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética
7.
Phys Chem Chem Phys ; 15(26): 10686-701, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23733145

RESUMO

The presence of cavities and tunnels in the interior of proteins, in conjunction with the structural plasticity arising from the coupling to the thermal fluctuations of the protein scaffold, has profound consequences on the pathways followed by ligands moving through the protein matrix. In this perspective we discuss how quantitative analysis of experimental rebinding kinetics from laser flash photolysis, trapping of unstable conformational states by embedding proteins within the nanopores of silica gels, and molecular simulations can synergistically converge to gain insight into the migration mechanism of ligands. We show how the evaluation of the free energy landscape for ligand diffusion based on the outcome of computational techniques can assist the definition of sound reaction schemes, leading to a comprehensive understanding of the broad range of chemical events and time scales that encompass the transport of small ligands in hemeproteins.


Assuntos
Hemeproteínas/química , Ligantes , Simulação de Dinâmica Molecular , Hemeproteínas/metabolismo , Cinética , Nanoporos , Fotólise , Sílica Gel/química , Termodinâmica
8.
Bioinformatics ; 27(23): 3276-85, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21967761

RESUMO

MOTIVATION: A variety of pocket detection algorithms are now freely or commercially available to the scientific community for the analysis of static protein structures. However, since proteins are dynamic entities, enhancing the capabilities of these programs for the straightforward detection and characterization of cavities taking into account protein conformational ensembles should be valuable for capturing the plasticity of pockets, and therefore allow gaining insight into structure-function relationships. RESULTS: This article describes a new method, called MDpocket, providing a fast, free and open-source tool for tracking small molecule binding sites and gas migration pathways on molecular dynamics (MDs) trajectories or other conformational ensembles. MDpocket is based on the fpocket cavity detection algorithm and a valuable contribution to existing analysis tools. The capabilities of MDpocket are illustrated for three relevant cases: (i) the detection of transient subpockets using an ensemble of crystal structures of HSP90; (ii) the detection of known xenon binding sites and migration pathways in myoglobin; and (iii) the identification of suitable pockets for molecular docking in P38 Map kinase. AVAILABILITY: MDpocket is free and open-source software and can be downloaded at http://fpocket.sourceforge.net. CONTACT: pschmidtke@ub.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Animais , Sítios de Ligação , Biologia Computacional , Proteínas de Choque Térmico HSP90/química , Modelos Moleculares , Conformação Proteica , Proteínas/química , Software , Proteínas Quinases p38 Ativadas por Mitógeno/química
9.
IUBMB Life ; 63(5): 355-62, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21618402

RESUMO

Nonsymbiotic hemoglobins AHb1 and AHb2 discovered in Arabidopsis thaliana are likely to carry out distinct physiological roles, in consideration of their differences in sequence, structure, expression pattern, and tissue localization. Despite a relatively fast autoxidation in the presence of O(2) , we were able to collect O(2) -binding curves for AHb2 in the presence of a reduction enzymatic system. AHb2 binds O(2) noncooperatively with a p50 of 0.021 ± 0.003 Torr, a value consistent with a recently proposed role in O(2) transport. The analysis of the internal cavities derived from the structures sampled in molecular dynamics simulations confirms strong differences with AHb1, proposed to work as a NO deoxygenase in vivo. Overall, our results are consistent with a role for AHb2 as an oxygen carrier, as recently proposed on the basis of experiments on AHb2-overexpressing mutants of A. thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico , Hemoglobinas/química , Hemoglobinas/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Oxirredução , Ligação Proteica , Conformação Proteica
10.
J Comput Aided Mol Des ; 24(12): 1035-51, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20936494

RESUMO

Knowledge of the 3D structure of the binding groove of major histocompatibility (MHC) molecules, which play a central role in the immune response, is crucial to shed light into the details of peptide recognition and polymorphism. This work reports molecular modeling studies aimed at providing 3D models for two class I and two class II MHC alleles from Salmo salar (Sasa), as the lack of experimental structures of fish MHC molecules represents a serious limitation to understand the specific preferences for peptide binding. The reliability of the structural models built up using bioinformatic tools was explored by means of molecular dynamics simulations of their complexes with representative peptides, and the energetics of the MHC-peptide interaction was determined by combining molecular mechanics interaction energies and implicit continuum solvation calculations. The structural models revealed the occurrence of notable differences in the nature of residues at specific positions in the binding groove not only between human and Sasa MHC proteins, but also between different Sasa alleles. Those differences lead to distinct trends in the structural features that mediate the binding of peptides to both class I and II MHC molecules, which are qualitatively reflected in the relative binding affinities. Overall, the structural models presented here are a valuable starting point to explore the interactions between MHC receptors and pathogen-specific interactions and to design vaccines against viral pathogens.


Assuntos
Epitopos/química , Complexo Principal de Histocompatibilidade/imunologia , Simulação de Dinâmica Molecular , Peptídeos/química , Salmo salar/imunologia , Alelos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Peptídeos/imunologia , Ligação Proteica/imunologia , Homologia de Sequência de Aminoácidos
11.
J Phys Chem Lett ; 10(23): 7333-7339, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31714784

RESUMO

Due to the poor aqueous solubility of retinoids, evolution has tuned their binding to cellular proteins to address specialized physiological roles by modulating uptake, storage, and delivery to specific targets. With the aim to disentangle the structure-function relationships in these proteins and disclose clues for engineering selective carriers, the binding mechanism of the two most abundant retinol-binding isoforms was explored by using enhanced sampling molecular dynamics simulations and surface plasmon resonance. The distinctive dynamics of the entry portal site in the holo species was crucial to modulate retinol dissociation. Remarkably, this process is controlled to a large extent by the replacement of Ile by Leu in the two isoforms, thus suggesting that fine control of ligand release can be achieved through a rigorous selection of conservative mutations in accessory sites.


Assuntos
Proteínas Celulares de Ligação ao Retinol/metabolismo , Vitamina A/metabolismo , Sítios de Ligação , Humanos , Isomerismo , Cinética , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Celulares de Ligação ao Retinol/química , Termodinâmica , Vitamina A/química
12.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1182-1191, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30658162

RESUMO

Pyrimidine nucleotides are essential for a vast number of cellular processes and dysregulation of pyrimidine metabolism has been associated with a variety of clinical abnormalities. Inborn errors of pyrimidine metabolism affecting enzymes in the pyrimidine de novo and degradation pathway have been identified but no patients have been described with a deficiency in proteins affecting the cellular import of ribonucleosides. In this manuscript, we report the elucidation of the genetic basis of the observed uridine-cytidineuria in a patient presenting with fever, hepatosplenomegaly, persistent lactate acidosis, severely disturbed liver enzymes and ultimately multi-organ failure. Sequence analysis of genes encoding proteins directly involved in the metabolism of uridine and cytidine showed two variants c.1528C > T (p.R510C) and c.1682G > A (p.R561Q) in SLC28A1, encoding concentrative nucleotide transporter 1 (hCNT1). Functional analysis showed that these variants affected the three-dimensional structure of hCNT1, altered glycosylation and decreased the half-life of the mutant proteins which resulted in impaired transport activity. Co-transfection of both variants, mimicking the trans disposition of c.1528C > T (p.R510C) and c.1682G > A (p.R561Q) in the patient, significantly impaired hCNT1 biological function. Whole genome sequencing identified two pathogenic variants c.50delT; p.(Leu17Argfs*34) and c.853_855del; p.(Lys285del) in the PRF1 gene, indicating that our patient was also suffering from Familial Hemophagocytic Lymphohistiocytosis type 2. The identification of two co-existing monogenic defects might have resulted in a blended phenotype. Thus, the clinical presentation of isolated hCNT1 deficiency remains to be established.


Assuntos
Proteínas de Membrana Transportadoras/deficiência , Insuficiência de Múltiplos Órgãos/metabolismo , Perforina/deficiência , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Pirimidinas/metabolismo , Evolução Fatal , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana Transportadoras/genética , Insuficiência de Múltiplos Órgãos/genética , Perforina/genética , Fenótipo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética
13.
J Am Chem Soc ; 130(5): 1688-93, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-18189394

RESUMO

The capability of Mycobacterium tuberculosis to rest in latency in the infected organism appears to be related to the disposal of detoxification mechanisms, which converts the nitric oxide (NO) produced by macrophages during the initial growth infection stage into a nitrate anion. Such a reaction appears to be associated with the truncated hemoglobin N (trHbN). Even though previous experimental and theoretical studies have examined the pathways used by NO and O2 to access the heme cavity, the eggression pathway of the nitrate anion is still a challenging question. In this work we present results obtained by means of classical and quantum chemistry simulations that show that trHbN is able to release rapidly the nitrate anion using an eggression pathway other than those used for the entry of both O2 and NO and that its release is promoted by hydration of the heme cavity. These results provide a detailed understanding of the molecular basis of the NO detoxification mechanism used by trHbN to guarantee an efficient NO detoxification and thus warrant survival of the microorganism under stress conditions.


Assuntos
Hemoglobinas Anormais/química , Hemoglobinas Anormais/metabolismo , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/toxicidade , Ânions/química , Sítios de Ligação , Simulação por Computador , Ligantes , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Nitratos/química , Nitratos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Água/química , Água/metabolismo
14.
Methods Enzymol ; 437: 477-98, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18433643

RESUMO

This chapter reviews the application of classical and quantum-mechanical atomistic simulation tools used in the investigation of several relevant issues in nitric oxide reactivity with globins and presents different simulation strategies based on classical force fields: standard molecular dynamics, essential dynamics, umbrella sampling, multiple steering molecular dynamics, and a novel technique for exploring the protein energy landscape. It also presents hybrid quantum-classical schemes as a tool to obtain relevant information regarding binding energies and chemical reactivity of globins. As illustrative examples, investigations of the structural flexibility, ligand migration profiles, oxygen affinity, and reactivity toward nitric oxide of truncated hemoglobin N of Mycobacterium tuberculosis are presented.


Assuntos
Simulação por Computador , Globinas/química , Globinas/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Fenômenos Biomecânicos , Metabolismo Energético , Heme/química , Inativação Metabólica , Cinética , Modelos Moleculares , Modelos Teóricos , Mycobacterium tuberculosis , Mioglobina/química , Mioglobina/metabolismo , Óxido Nítrico/farmacocinética , Oxigênio/metabolismo , Oxigênio/farmacologia , Ligação Proteica , Dobramento de Proteína , Teoria Quântica , Transdução de Sinais , Especificidade por Substrato , Hemoglobinas Truncadas/química
15.
J Med Chem ; 51(12): 3588-98, 2008 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-18517184

RESUMO

A novel series of donepezil-tacrine hybrids designed to simultaneously interact with the active, peripheral and midgorge binding sites of acetylcholinesterase (AChE) have been synthesized and tested for their ability to inhibit AChE, butyrylcholinesterase (BChE), and AChE-induced A beta aggregation. These compounds consist of a unit of tacrine or 6-chlorotacrine, which occupies the same position as tacrine at the AChE active site, and the 5,6-dimethoxy-2-[(4-piperidinyl)methyl]-1-indanone moiety of donepezil (or the indane derivative thereof), whose position along the enzyme gorge and the peripheral site can be modulated by a suitable tether that connects tacrine and donepezil fragments. All of the new compounds are highly potent inhibitors of bovine and human AChE and BChE, exhibiting IC50 values in the subnanomolar or low nanomolar range in most cases. Moreover, six out of the eight hybrids of the series, particularly those bearing an indane moiety, exhibit a significant A beta antiaggregating activity, which makes them promising anti-Alzheimer drug candidates.


Assuntos
Acetilcolinesterase/química , Peptídeos beta-Amiloides/química , Butirilcolinesterase/química , Inibidores da Colinesterase/síntese química , Indanos/síntese química , Piperidinas/síntese química , Animais , Sítios de Ligação , Bovinos , Inibidores da Colinesterase/química , Donepezila , Humanos , Indanos/química , Modelos Moleculares , Piperidinas/química , Relação Estrutura-Atividade , Tacrina/análogos & derivados , Tacrina/síntese química , Tacrina/química
16.
Sci Rep ; 8(1): 10855, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022039

RESUMO

Nitrophorins (NP) 1-7 are NO-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. The isoform NP7 displays peculiar properties, such as an abnormally high isoelectric point, the ability to bind negatively charged membranes, and a strong pH sensitivity of NO affinity. A unique trait of NP7 is the presence of Glu in position 27, which is occupied by Val in other NPs. Glu27 appears to be important for tuning the heme properties, but its influence on the pH-dependent NO release mechanism, which is assisted by a conformational change in the AB loop, remains unexplored. Here, in order to gain insight into the functional role of Glu27, we examine the effect of Glu27 → Val and Glu27 → Gln mutations on the ligand binding kinetics using CO as a model. The results reveal that annihilation of the negative charge of Glu27 upon mutation reduces the pH sensitivity of the ligand binding rate, a process that in turn depends on the ionization of Asp32. We propose that Glu27 exerts a through-space electrostatic action on Asp32, which shifts the pKa of the latter amino acid towards more acidic values thus reducing the pH sensitivity of the transition between open and closed states.


Assuntos
Ácido Glutâmico/metabolismo , Heme/metabolismo , Hemeproteínas/química , Hemeproteínas/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Eletricidade Estática , Animais , Cristalografia por Raios X , Ácido Glutâmico/química , Ácido Glutâmico/genética , Heme/química , Hemeproteínas/genética , Proteínas de Insetos/genética , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Rhodnius/metabolismo , Proteínas e Peptídeos Salivares/genética
17.
Eur J Med Chem ; 139: 412-428, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28818766

RESUMO

Recent findings suggest that treatment with 11ß-HSD1 inhibitors provides a novel approach to deal with age-related cognitive dysfunctions, including Alzheimer's disease. In this work we report potent 11ß-HSD1 inhibitors featuring unexplored pyrrolidine-based polycyclic substituents. A selected candidate administered to 12-month-old SAMP8 mice for four weeks prevented memory deficits and displayed a neuroprotective action. This is the first time that 11ß-HSD1 inhibitors have been studied in this broadly-used mouse model of accelerated senescence and late-onset Alzheimer's disease.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Disfunção Cognitiva/tratamento farmacológico , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Pirrolidinas/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Fatores Etários , Animais , Disfunção Cognitiva/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Masculino , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Pirrolidinas/síntese química , Pirrolidinas/química , Relação Estrutura-Atividade
18.
Proteins ; 64(2): 457-64, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16688782

RESUMO

Mycobacterium tuberculosis, the causative agent of human tuberculosis, is forced into latency by nitric oxide produced by macrophages during infection. In response to nitrosative stress M. tuberculosis has evolved a defense mechanism that relies on the oxygenated form of "truncated hemoglobin" N (trHbN), formally acting as NO-dioxygenase, yielding the harmless nitrate ion. X-ray crystal structures have shown that trHbN hosts a two-branched protein matrix tunnel system, proposed to control diatomic ligand migration to the heme, as the rate-limiting step in NO conversion to nitrate. Extended molecular dynamics simulations (0.1 micros), employed here to characterize the factors controlling diatomic ligand diffusion through the apolar tunnel system, suggest that O2 migration in deoxy-trHbN is restricted to a short branch of the tunnel, and that O2 binding to the heme drives conformational and dynamical fluctuations promoting NO migration through the long tunnel branch. The simulation results suggest that trHbN has evolved a dual-path mechanism for migration of O2 and NO to the heme, to achieve the most efficient NO detoxification.


Assuntos
Hemoglobinas Anormais/química , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico/química , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Oxigênio/metabolismo , Ligação Proteica , Conformação Proteica , Hemoglobinas Truncadas
19.
FEBS J ; 283(2): 305-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26499089

RESUMO

UNLABELLED: A unique defense mechanisms by which Mycobacterium tuberculosis protects itself from nitrosative stress is based on the O2 -dependent NO-dioxygenase (NOD) activity of truncated hemoglobin 2/2HbN (Mt2/2HbN). The NOD activity largely depends on the efficiency of ligand migration to the heme cavity through a two-tunnel (long and short) system; recently, it was also correlated with the presence at the Mt2/2HbN N-terminus of a short pre-A region, not conserved in most 2/2HbNs, whose deletion results in a drastic reduction of NO scavenging. In the present study, we report the crystal structure of Mt2/2HbN-ΔpreA, lacking the pre-A region, at a resolution of 1.53 Å. We show that removal of the pre-A region results in long range effects on the protein C-terminus, promoting the assembly of a stable dimer, both in the crystals and in solution. In the Mt2/2HbN-ΔpreA dimer, access of heme ligands to the short tunnel is hindered. Molecular dynamics simulations show that the long tunnel branch is the only accessible pathway for O2 -ligand migration to/from the heme, and that the gating residue Phe(62)E15 partly restricts the diameter of the tunnel. Accordingly, kinetic measurements indicate that the kon value for peroxynitrite isomerization by Mt2/2HbN-ΔpreA-Fe(III) is four-fold lower relative to the full-length protein, and that NO scavenging by Mt2/2HbN-ΔpreA-Fe(II)-O2 is reduced by 35-fold. Therefore, we speculate that Mt2/2HbN evolved to host the pre-A region as a mechanism for preventing dimerization, thus reinforcing the survival of the microorganism against the reactive nitrosative stress in macrophages. DATABASE: Coordinates and structure factors have been deposited in the Protein Data Bank under accession number 5AB8.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Hemoglobinas Truncadas/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Dioxigenases/metabolismo , Heme/química , Heme/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/química , Ácido Peroxinitroso/metabolismo , Conformação Proteica , Multimerização Proteica , Hemoglobinas Truncadas/genética
20.
J Med Chem ; 48(23): 7223-33, 2005 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16279781

RESUMO

New dual binding site acetylcholinesterase (AChE) inhibitors have been designed and synthesized as new potent drugs that may simultaneously alleviate cognitive deficits and behave as disease-modifying agents by inhibiting the beta-amyloid (A beta) peptide aggregation through binding to both catalytic and peripheral sites of the enzyme. Particularly, compounds 5 and 6 emerged as the most potent heterodimers reported so far, displaying IC50 values for AChE inhibition of 20 and 60 pM, respectively. More importantly, these dual AChE inhibitors inhibit the AChE-induced A beta peptide aggregation with IC50 values 1 order of magnitude lower than that of propidium, thus being the most potent derivatives with this activity reported up to date. We therefore conclude that these compounds are very promising disease-modifying agents for the treatment of Alzheimer's disease (AD).


Assuntos
Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Inibidores da Colinesterase/síntese química , Nootrópicos/síntese química , Tacrina/análogos & derivados , Tacrina/síntese química , Peptídeos beta-Amiloides/química , Animais , Sítios de Ligação , Butirilcolinesterase/química , Bovinos , Linhagem Celular Tumoral , Inibidores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Dimerização , Desenho de Fármacos , Eritrócitos/enzimologia , Fluorometria , Humanos , Modelos Moleculares , Nootrópicos/química , Nootrópicos/toxicidade , Ligação Proteica , Relação Estrutura-Atividade , Tacrina/química , Tacrina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA