Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 69(1): 136-145.e6, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290611

RESUMO

Transcription of the Ebola virus genome depends on the viral transcription factor VP30 in its unphosphorylated form, but the underlying molecular mechanism of VP30 dephosphorylation is unknown. Here we show that the Ebola virus nucleoprotein (NP) recruits the host PP2A-B56 protein phosphatase through a B56-binding LxxIxE motif and that this motif is essential for VP30 dephosphorylation and viral transcription. The LxxIxE motif and the binding site of VP30 in NP are in close proximity, and both binding sites are required for the dephosphorylation of VP30. We generate a specific inhibitor of PP2A-B56 and show that it suppresses Ebola virus transcription and infection. This work dissects the molecular mechanism of VP30 dephosphorylation by PP2A-B56, and it pinpoints this phosphatase as a potential target for therapeutic intervention.


Assuntos
Ebolavirus/metabolismo , Proteína Fosfatase 2/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/genética , Proteínas Virais/genética , Replicação Viral/genética , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Ebolavirus/genética , Células HEK293 , Células HeLa , Humanos , Nucleoproteínas , Fosforilação , Domínios e Motivos de Interação entre Proteínas/genética , Proteína Fosfatase 2/antagonistas & inibidores , RNA Viral/metabolismo , Células Vero
2.
EMBO J ; 40(18): e105658, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34260076

RESUMO

The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances. RBBP6 and hnRNP L modulate VP30 phosphorylation, increase viral transcription, and exert additive effects on viral RNA synthesis. PEG10 has more modest inhibitory effects on EBOV replication. hnRNPUL1 positively affects viral RNA synthesis but in a VP30-independent manner. Binding studies demonstrate variable capacity of the PPxPxY motifs from these proteins to bind VP30, define PxPPPPxY as an optimal binding motif, and identify the fifth proline and the tyrosine as most critical for interaction. Competition binding and hydrogen-deuterium exchange mass spectrometry studies demonstrate that each protein binds a similar interface on VP30. VP30 therefore presents a novel proline recognition domain that is targeted by multiple host proteins to modulate viral transcription.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Prolina/metabolismo , Tirosina/metabolismo , Proteínas de Transporte , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Replicação Viral
3.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305775

RESUMO

Filoviridae is a family of negative-sense RNA viruses with genomes of about 13.1-20.9 kb that infect fish, mammals and reptiles. The filovirid genome is a linear, non-segmented RNA with five canonical open reading frames (ORFs) that encode a nucleoprotein (NP), a polymerase cofactor (VP35), a glycoprotein (GP1,2), a transcriptional activator (VP30) and a large protein (L) containing an RNA-directed RNA polymerase (RdRP) domain. All filovirid genomes encode additional proteins that vary among genera. Several filovirids (e.g., Ebola virus, Marburg virus) are pathogenic for humans and highly virulent. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Filoviridae, which is available at www.ictv.global/report/filoviridae.


Assuntos
Ebolavirus , Marburgvirus , Rhabdoviridae , Animais , Humanos , Ebolavirus/genética , Rhabdoviridae/genética , Filogenia , Genoma Viral , Replicação Viral , Mamíferos/genética
4.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37622664

RESUMO

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Vírus de RNA de Sentido Negativo , Vírus de RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética
5.
PLoS Pathog ; 17(10): e1010002, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699554

RESUMO

Transcription of non-segmented negative sense (NNS) RNA viruses follows a stop-start mechanism and is thought to be initiated at the genome's very 3'-end. The synthesis of short abortive leader transcripts (leaderRNAs) has been linked to transcription initiation for some NNS viruses. Here, we identified the synthesis of abortive leaderRNAs (as well as trailer RNAs) that are specifically initiated opposite to (anti)genome nt 2; leaderRNAs are predominantly terminated in the region of nt ~ 60-80. LeaderRNA synthesis requires hexamer phasing in the 3'-leader promoter. We determined a steady-state NP mRNA:leaderRNA ratio of ~10 to 30-fold at 48 h after Ebola virus (EBOV) infection, and this ratio was higher (70 to 190-fold) for minigenome-transfected cells. LeaderRNA initiation at nt 2 and the range of termination sites were not affected by structure and length variation between promoter elements 1 and 2, nor the presence or absence of VP30. Synthesis of leaderRNA is suppressed in the presence of VP30 and termination of leaderRNA is not mediated by cryptic gene end (GE) signals in the 3'-leader promoter. We further found different genomic 3'-end nucleotide requirements for transcription versus replication, suggesting that promoter recognition is different in the replication and transcription mode of the EBOV polymerase. We further provide evidence arguing against a potential role of EBOV leaderRNAs as effector molecules in innate immunity. Taken together, our findings are consistent with a model according to which leaderRNAs are abortive replicative RNAs whose synthesis is not linked to transcription initiation. Rather, replication and transcription complexes are proposed to independently initiate RNA synthesis at separate sites in the 3'-leader promoter, i.e., at the second nucleotide of the genome 3'-end and at the more internally positioned transcription start site preceding the first gene, respectively, as reported for Vesicular stomatitis virus.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Ebolavirus/genética , RNA Viral/genética , Transcrição Gênica/genética , Ebolavirus/enzimologia
6.
Arch Virol ; 168(8): 220, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537381

RESUMO

The International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group continues to prospectively refine the established nomenclature for taxa included in family Filoviridae in an effort to decrease confusion of genus, species, and virus names and to adhere to amended stipulations of the International Code of Virus Classification and Nomenclature (ICVCN). Recently, the genus names Ebolavirus and Marburgvirus were changed to Orthoebolavirus and Orthomarburgvirus, respectively. Additionally, all established species names in family Filoviridae now adhere to the ICTV-mandated binomial format. Virus names remain unchanged and valid. Here, we outline the revised taxonomy of family Filoviridae as approved by the ICTV in April 2023.


Assuntos
Ebolavirus , Filoviridae , Marburgvirus , Vírus
7.
RNA ; 26(4): 439-453, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31924730

RESUMO

The genomic, bipartite replication promoter of Ebola virus (EBOV) consists of elements 1 (PE1) and 2 (PE2). PE1 (55 nt at the 3'-terminus) is separated from PE2 (harboring eight 3'-UN5 hexamers) by the transcription start sequence (TSS) of the first nucleoprotein (NP) gene plus a spacer sequence. Insertions or deletions in the spacer were reported to support genome replication if comprising 6 or 12, but not 1/2/3/5/9 nt. This gave rise to the formulation of the "rule of 6" for the EBOV replication promoter. Here, we studied the impact of such hexamer phasing on viral transcription using a series of replication-competent and -deficient monocistronic minigenomes, in which the spacer of the NP gene was mutated or replaced with that of internal EBOV genes and mutated variants thereof. Beyond reporter gene assays, we conducted qRT-PCR to determine the levels of mRNA, genomic and antigenomic RNA. We demonstrate that hexamer phasing is also essential for viral transcription, that UN5 hexamer periodicity extends into PE1 and that the spacer region can be expanded by 48 nt without losses of transcriptional activity. Making the UN5 hexamer phasing continuous between PE1 and PE2 enhanced the efficiency of transcription and replication. We show that the 2 nt preceding the TSS are essential for transcription. We further propose a role for UN5 hexamer phasing in positioning NP during initiation of RNA synthesis, or in dissociation/reassociation of NP from the template RNA strand while threading the RNA through the active site of the elongating polymerase during replication and transcription.


Assuntos
Regiões 3' não Traduzidas , Ebolavirus/genética , Iniciação da Transcrição Genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Genes Virais , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Sítio de Iniciação de Transcrição
8.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268520

RESUMO

Viral transcription and replication of Ebola virus (EBOV) is balanced by transcription factor VP30, an RNA binding protein. An RNA hairpin at the transcription start site (TSS) of the first gene (NP hairpin) in the 3'-leader promoter is thought to mediate the VP30 dependency of transcription. Here, we investigated the constraints of VP30 dependency using a series of monocistronic minigenomes with sequence, structure and length deviations from the native NP hairpin. Hairpin stabilizations decreased while destabilizations increased transcription in the absence of VP30, but in all cases, transcription activity was higher in the presence versus absence of VP30. This also pertains to a mutant that is unable to form any RNA secondary structure at the TSS, demonstrating that the activity of VP30 is not simply determined by the capacity to form a hairpin structure at the TSS. Introduction of continuous 3'-UN5 hexamer phasing between promoter elements PE1 and PE2 by a single point mutation in the NP hairpin boosted VP30-independent transcription. Moreover, this point mutation, but also hairpin stabilizations, impaired the relative increase of replication in the absence of VP30. Our results suggest that the native NP hairpin is optimized for tight regulation by VP30 while avoiding an extent of hairpin stability that impairs viral transcription, as well as for enabling the switch from transcription to replication when VP30 is not part of the polymerase complex.IMPORTANCE A detailed understanding is lacking how the Ebola virus (EBOV) protein VP30 regulates activity of the viral polymerase complex. Here, we studied how RNA sequence, length and structure at the transcription start site (TSS) in the 3'-leader promoter influence the impact of VP30 on viral polymerase activity. We found that hairpin stabilizations tighten the VP30 dependency of transcription but reduce transcription efficiency and attenuate the switch to replication in the absence of VP30. Upon hairpin destabilization, VP30-independent transcription - already weakly detectable at the native promoter - increases, but never reaches the same extent as in the presence of VP30. We conclude that the native hairpin structure involving the TSS (i) establishes an optimal balance between efficient transcription and tight regulation by VP30, (ii) is linked to hexamer phasing in the promoter, and (iii) favors the switch to replication when VP30 is absent.

9.
Arch Virol ; 167(12): 2857-2906, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36437428

RESUMO

In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais , Vírus , Humanos , Mononegavirais/genética , Filogenia
10.
RNA Biol ; 18(4): 523-536, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32882148

RESUMO

Ebola virus (EBOV) RNA has the potential to form hairpin structures at the transcription start sequence (TSS) and reinitiation sites of internal genes, both on the genomic and antigenomic/mRNA level. Hairpin formation involving the TSS and the spacer sequence between promotor elements (PE) 1 and 2 was suggested to regulate viral transcription. Here, we provide evidence that such RNA structures form during RNA synthesis by the viral polymerase and affect its activity. This was analysed using monocistronic minigenomes carrying hairpin structure variants in the TSS-spacer region that differ in length and stability. Transcription and replication were measured via reporter activity and by qRT-PCR quantification of the distinct viral RNA species. We demonstrate that viral RNA synthesis is remarkably tolerant to spacer extensions of up to ~54 nt, but declines beyond this length limit (~25% residual activity for a 66-nt extension). Minor incremental stabilizations of hairpin structures in the TSS-spacer region and on the mRNA/antigenomic level were found to rapidly abolish viral polymerase activity, which may be exploited for antisense strategies to inhibit viral RNA synthesis. Finally, balanced viral transcription and replication can still occur when any RNA structure formation potential at the TSS is eliminated, provided that hexamer phasing in the promoter region is maintained. Altogether, the findings deepen and refine our insight into structure and length constraints within the EBOV transcription and replication promoter and suggest a remarkable flexibility of the viral polymerase in recognition of PE1 and PE2.


Assuntos
Ebolavirus/genética , Estabilidade de RNA/genética , RNA Viral/química , Replicação Viral/genética , Ebolavirus/química , Ebolavirus/fisiologia , Genoma Viral/fisiologia , Células HEK293 , Doença pelo Vírus Ebola/virologia , Humanos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Viral/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica
11.
J Infect Dis ; 219(4): 556-561, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30452666

RESUMO

In response to the Ebola virus (EBOV) crisis of 2013-2016, a recombinant vesicular stomatitis virus (VSV)-based EBOV vaccine was clinically tested (NCT02283099). A single-dose regimen of VSV-EBOV revealed a safe and immunogenic profile and demonstrated clinical efficacy. While EBOV-specific immune responses to this candidate vaccine have previously been investigated, limited human data on immunity to the VSV vector are available. Within the scope of a phase 1 study, we performed a comprehensive longitudinal analysis of adaptive immune responses to internal VSV proteins following VSV-EBOV immunization. While no preexisting immunity to the vector was observed, more than one-third of subjects developed VSV-specific cytotoxic T-lymphocyte responses and antibodies.


Assuntos
Formação de Anticorpos , Vacinas contra Ebola/imunologia , Imunidade Celular , Vesiculovirus/imunologia , Adulto , Vacinas contra Ebola/administração & dosagem , Humanos , Estudos Longitudinais , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
12.
N Engl J Med ; 374(17): 1647-60, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25830326

RESUMO

BACKGROUND: The replication-competent recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing a Zaire ebolavirus (ZEBOV) glycoprotein was selected for rapid safety and immunogenicity testing before its use in West Africa. METHODS: We performed three open-label, dose-escalation phase 1 trials and one randomized, double-blind, controlled phase 1 trial to assess the safety, side-effect profile, and immunogenicity of rVSV-ZEBOV at various doses in 158 healthy adults in Europe and Africa. All participants were injected with doses of vaccine ranging from 300,000 to 50 million plaque-forming units (PFU) or placebo. RESULTS: No serious vaccine-related adverse events were reported. Mild-to-moderate early-onset reactogenicity was frequent but transient (median, 1 day). Fever was observed in up to 30% of vaccinees. Vaccine viremia was detected within 3 days in 123 of the 130 participants (95%) receiving 3 million PFU or more; rVSV was not detected in saliva or urine. In the second week after injection, arthritis affecting one to four joints developed in 11 of 51 participants (22%) in Geneva, with pain lasting a median of 8 days (interquartile range, 4 to 87); 2 self-limited cases occurred in 60 participants (3%) in Hamburg, Germany, and Kilifi, Kenya. The virus was identified in one synovial-fluid aspirate and in skin vesicles of 2 other vaccinees, showing peripheral viral replication in the second week after immunization. ZEBOV-glycoprotein-specific antibody responses were detected in all the participants, with similar glycoprotein-binding antibody titers but significantly higher neutralizing antibody titers at higher doses. Glycoprotein-binding antibody titers were sustained through 180 days in all participants. CONCLUSIONS: In these studies, rVSV-ZEBOV was reactogenic but immunogenic after a single dose and warrants further evaluation for safety and efficacy. (Funded by the Wellcome Trust and others; ClinicalTrials.gov numbers, NCT02283099, NCT02287480, and NCT02296983; Pan African Clinical Trials Registry number, PACTR201411000919191.).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Glicoproteínas de Membrana/imunologia , Proteínas do Envelope Viral/imunologia , Adulto , Anticorpos Antivirais/sangue , Artrite/etiologia , Dermatite/etiologia , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Ebolavirus/isolamento & purificação , Exantema/etiologia , Feminino , Doença pelo Vírus Ebola/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Vesiculovirus , Viremia , Eliminação de Partículas Virais
13.
N Engl J Med ; 374(17): 1635-46, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25629663

RESUMO

BACKGROUND: The West African outbreak of Ebola virus disease that peaked in 2014 has caused more than 11,000 deaths. The development of an effective Ebola vaccine is a priority for control of a future outbreak. METHODS: In this phase 1 study, we administered a single dose of the chimpanzee adenovirus 3 (ChAd3) vaccine encoding the surface glycoprotein of Zaire ebolavirus (ZEBOV) to 60 healthy adult volunteers in Oxford, United Kingdom. The vaccine was administered in three dose levels--1×10(10) viral particles, 2.5×10(10) viral particles, and 5×10(10) viral particles--with 20 participants in each group. We then assessed the effect of adding a booster dose of a modified vaccinia Ankara (MVA) strain, encoding the same Ebola virus glycoprotein, in 30 of the 60 participants and evaluated a reduced prime-boost interval in another 16 participants. We also compared antibody responses to inactivated whole Ebola virus virions and neutralizing antibody activity with those observed in phase 1 studies of a recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) to determine relative potency and assess durability. RESULTS: No safety concerns were identified at any of the dose levels studied. Four weeks after immunization with the ChAd3 vaccine, ZEBOV-specific antibody responses were similar to those induced by rVSV-ZEBOV vaccination, with a geometric mean titer of 752 and 921, respectively. ZEBOV neutralization activity was also similar with the two vaccines (geometric mean titer, 14.9 and 22.2, respectively). Boosting with the MVA vector increased virus-specific antibodies by a factor of 12 (geometric mean titer, 9007) and increased glycoprotein-specific CD8+ T cells by a factor of 5. Significant increases in neutralizing antibodies were seen after boosting in all 30 participants (geometric mean titer, 139; P<0.001). Virus-specific antibody responses in participants primed with ChAd3 remained positive 6 months after vaccination (geometric mean titer, 758) but were significantly higher in those who had received the MVA booster (geometric mean titer, 1750; P<0.001). CONCLUSIONS: The ChAd3 vaccine boosted with MVA elicited B-cell and T-cell immune responses to ZEBOV that were superior to those induced by the ChAd3 vaccine alone. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT02240875.).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Adenovirus dos Símios/imunologia , Adulto , Animais , Anticorpos Antivirais/sangue , Linfócitos B/fisiologia , Citocinas/sangue , Vacinas contra Ebola/administração & dosagem , Feminino , Doença pelo Vírus Ebola/imunologia , Humanos , Imunidade Celular , Imunização Secundária , Masculino , Pessoa de Meia-Idade , Pan troglodytes , Linfócitos T/fisiologia , Vacínia , Adulto Jovem
15.
PLoS Med ; 14(10): e1002402, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28985239

RESUMO

BACKGROUND: The rVSVΔG-ZEBOV-GP vaccine prevented Ebola virus disease when used at 2 × 107 plaque-forming units (PFU) in a trial in Guinea. This study provides further safety and immunogenicity data. METHODS AND FINDINGS: A randomised, open-label phase I trial in Lambaréné, Gabon, studied 5 single intramuscular vaccine doses of 3 × 103, 3 × 104, 3 × 105, 3 × 106, or 2 × 107 PFU in 115 adults and a dose of 2 × 107 PFU in 20 adolescents and 20 children. The primary objective was safety and tolerability 28 days post-injection. Immunogenicity, viraemia, and shedding post-vaccination were evaluated as secondary objectives. In adults, mild-to-moderate adverse events were frequent, but there were no serious or severe adverse events related to vaccination. Before vaccination, Zaire Ebola virus (ZEBOV)-glycoprotein (GP)-specific and ZEBOV antibodies were detected in 11% and 27% of adults, respectively. In adults, 74%-100% of individuals who received a dose 3 × 104, 3 × 105, 3 × 106, or 2 × 107 PFU had a ≥4.0-fold increase in geometric mean titres (GMTs) of ZEBOV-GP-specific antibodies at day 28, reaching GMTs of 489 (95% CI: 264-908), 556 (95% CI: 280-1,101), 1,245 (95% CI: 899-1,724), and 1,503 (95% CI: 931-2,426), respectively. Twenty-two percent of adults had a ≥4-fold increase of ZEBOV antibodies, with GMTs at day 28 of 1,015 (647-1,591), 1,887 (1,154-3,085), 1,445 (1,013-2,062), and 3,958 (2,249-6,967) for the same doses, respectively. These antibodies persisted up to day 180 for doses ≥3 × 105 PFU. Adults with antibodies before vaccination had higher GMTs throughout. Neutralising antibodies were detected in more than 50% of participants at doses ≥3 × 105 PFU. As in adults, no serious or severe adverse events related to vaccine occurred in adolescents or children. At day 2, vaccine RNA titres were higher for adolescents and children than adults. At day 7, 78% of adolescents and 35% of children had recombinant vesicular stomatitis virus RNA detectable in saliva. The vaccine induced high GMTs of ZEBOV-GP-specific antibodies at day 28 in adolescents, 1,428 (95% CI: 1,025-1,989), and children, 1,620 (95% CI: 806-3,259), and in both groups antibody titres increased up to day 180. The absence of a control group, lack of stratification for baseline antibody status, and imbalances in male/female ratio are the main limitations of this study. CONCLUSIONS: Our data confirm the acceptable safety and immunogenicity profile of the 2 × 107 PFU dose in adults and support consideration of lower doses for paediatric populations and those who request boosting. TRIAL REGISTRATION: Pan African Clinical Trials Registry PACTR201411000919191.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Vacinas contra Ebola/administração & dosagem , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Imunogenicidade da Vacina , Adolescente , Adulto , Fatores Etários , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Biomarcadores/sangue , Criança , Vacinas contra Ebola/efeitos adversos , Vacinas contra Ebola/imunologia , Feminino , Gabão , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Resultado do Tratamento , Vacinação , Eliminação de Partículas Virais , Adulto Jovem
16.
J Virol ; 90(10): 4914-4925, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26937028

RESUMO

UNLABELLED: Ebola virus is the causative agent of a severe fever with high fatality rates in humans and nonhuman primates. The regulation of Ebola virus transcription and replication currently is not well understood. An important factor regulating viral transcription is VP30, an Ebola virus-specific transcription factor associated with the viral nucleocapsid. Previous studies revealed that the phosphorylation status of VP30 impacts viral transcription. Together with NP, L, and the polymerase cofactor VP35, nonphosphorylated VP30 supports viral transcription. Upon VP30 phosphorylation, viral transcription ceases. Phosphorylation weakens the interaction between VP30 and the polymerase cofactor VP35 and/or the viral RNA. VP30 thereby is excluded from the viral transcription complex, simultaneously leading to increased viral replication which is supported by NP, L, and VP35 alone. Here, we use an infectious virus-like particle assay and recombinant viruses to show that the dynamic phosphorylation of VP30 is critical for the cotransport of VP30 with nucleocapsids to the sites of viral RNA synthesis, where VP30 is required to initiate primary viral transcription. We further demonstrate that a single serine residue at amino acid position 29 was sufficient to render VP30 active in primary transcription and to generate a recombinant virus with characteristics comparable to those of wild-type virus. In contrast, the rescue of a recombinant virus with a single serine at position 30 in VP30 was unsuccessful. Our results indicate critical roles for phosphorylated and dephosphorylated VP30 during the viral life cycle. IMPORTANCE: The current Ebola virus outbreak in West Africa has caused more than 28,000 cases and 11,000 fatalities. Very little is known regarding the molecular mechanisms of how the Ebola virus transcribes and replicates its genome. Previous investigations showed that the transcriptional support activity of VP30 is activated upon VP30 dephosphorylation. The current study reveals that the situation is more complex and that primary transcription as well as the rescue of recombinant Ebola virus also requires the transient phosphorylation of VP30. VP30 encodes six N-proximal serine residues that serve as phosphorylation acceptor sites. The present study shows that the dynamic phosphorylation of serine at position 29 alone is sufficient to activate primary viral transcription. Our results indicate a series of phosphorylation/dephosphorylation events that trigger binding to and release from the nucleocapsid and transcription complex to be essential for the full activity of VP30.


Assuntos
Ebolavirus/genética , Ebolavirus/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral , Animais , Ebolavirus/crescimento & desenvolvimento , Células HEK293 , Doença pelo Vírus Ebola/virologia , Humanos , Nucleocapsídeo/metabolismo , Fosforilação , RNA Viral/genética , RNA Viral/metabolismo , Ativação Transcricional , Replicação Viral/genética
17.
J Virol ; 90(16): 7481-7496, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27279615

RESUMO

UNLABELLED: The template for Ebola virus (EBOV) transcription and replication is the helical viral nucleocapsid composed of the viral negative-sense (-) RNA genome, which is complexed by the nucleoprotein (NP), VP35, polymerase L, VP24, and VP30. While viral replication is exerted by polymerase L and its cofactor VP35, EBOV mRNA synthesis is regulated by the viral nucleocapsid protein VP30, an essential EBOV-specific transcription factor. VP30 is a homohexameric phosphoprotein containing a nonconventional zinc finger. The transcriptional support activity of VP30 is strongly influenced by its phosphorylation state. We studied here how RNA binding contributed to VP30's function in transcriptional activation. Using a novel mobility shift assay and the 3'-terminal 154 nucleotides of the EBOV genome as a standard RNA substrate, we detected that RNA binding of VP30 was severely impaired by VP30 mutations that (i) destroy the protein's capability to form homohexamers, (ii) disrupt the integrity of its zinc finger domain, (iii) mimic its fully phosphorylated state, or (iv) alter the putative RNA binding region. RNA binding of the mutant VP30 proteins correlated strongly with their transcriptional support activity. Furthermore, we showed that the interaction between VP30 and the polymerase cofactor VP35 is RNA dependent, while formation of VP30 homohexamers and VP35 homotetramers is not. Our data indicate that RNA binding of VP30 is essential for its transcriptional support activity and stabilizes complexes of VP35/L polymerase with the (-) RNA template to favor productive transcriptional initiation in the presence of termination-active RNA secondary structures. IMPORTANCE: Ebola virus causes severe fevers with unusually high case fatality rates. The recent outbreak of Ebola virus in West Africa claimed more than 11,000 lives and threatened to destabilize a whole region because of its dramatic effects on the public health systems. It is currently not completely understood how Ebola virus manages to balance viral transcription and replication in the infected cells. This study shows that transcriptional support activity of the Ebola virus transcription factor VP30 is highly correlated with its ability to bind viral RNA. The interaction between VP30 and VP35, the Ebola virus polymerase cofactor, is dependent on the presence of RNA as well. Our data contribute to the understanding of the dynamic interplay between nucleocapsid proteins and the viral RNA template in order to promote viral RNA synthesis.


Assuntos
Ebolavirus/fisiologia , RNA Viral/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Ligação Proteica
18.
Microb Cell Fact ; 16(1): 131, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28750668

RESUMO

BACKGROUND: The ideal protein expression system should provide recombinant proteins in high quality and quantity involving low production costs only. However, especially for complex therapeutic proteins like monoclonal antibodies many challenges remain to meet this goal and up to now production of monoclonal antibodies is very costly and delicate. Particularly, emerging disease outbreaks like Ebola virus in Western Africa in 2014-2016 make it necessary to reevaluate existing production platforms and develop robust and cheap alternatives that are easy to handle. RESULTS: In this study, we engineered the microalga Phaeodactylum tricornutum to produce monoclonal IgG antibodies against the nucleoprotein of Marburg virus, a close relative of Ebola virus causing severe hemorrhagic fever with high fatality rates in humans. Sequences for both chains of a mouse IgG antibody were retrieved from a murine hybridoma cell line and implemented in the microalgal system. Fully assembled antibodies were shown to be secreted by the alga and antibodies were proven to be functional in western blot, ELISA as well as IFA studies just like the original hybridoma produced IgG. Furthermore, synthetic variants with constant regions of a rabbit IgG and human IgG with optimized codon usage were produced and characterized. CONCLUSIONS: This study highlights the potential of microalgae as robust and low cost expression platform for monoclonal antibodies secreting IgG antibodies directly into the culture medium. Microalgae possess rapid growth rates, need basically only water, air and sunlight for cultivation and are very easy to handle.


Assuntos
Anticorpos Monoclonais/metabolismo , Diatomáceas/metabolismo , Marburgvirus/genética , Ribonucleoproteínas/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Humanos , Hibridomas/citologia , Hibridomas/metabolismo , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Camundongos , Microalgas/metabolismo , Microscopia de Fluorescência , Proteínas do Nucleocapsídeo , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
19.
Virol J ; 13: 149, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581733

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity. METHODS: We tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus. RESULTS: Suramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection. CONCLUSION: Suramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/virologia , Vírus Chikungunya/efeitos dos fármacos , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/virologia , Suramina/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Ebolavirus/genética , Ebolavirus/fisiologia , Humanos , Replicação Viral/efeitos dos fármacos
20.
RNA Biol ; 13(9): 783-98, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27315567

RESUMO

The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30 binding. Also, ssDNAs bind substantially weaker than isosequential ssRNAs and heparin competes with RNA for binding to VP30, indicating that ribose 2'-hydroxyls and electrostatic contacts of the phosphate groups contribute to the formation of VP30:RNA complexes. Our results indicate a rather relaxed RNA binding specificity of filoviral VP30, which largely differs from that of the functionally related transcription factor of the Paramyxoviridae which binds to ssRNAs as short as 13 nt with a preference for oligo(A) sequences.


Assuntos
Ebolavirus/genética , Ebolavirus/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Composição de Bases , Sequência de Bases , Ensaio de Desvio de Mobilidade Eletroforética , Genoma Viral , Doença pelo Vírus Ebola/virologia , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Antissenso/química , RNA Antissenso/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/química , Proteínas de Ligação a RNA/química , Deleção de Sequência , Especificidade por Substrato , Fatores de Transcrição/química , Transcrição Gênica , Proteínas Virais/química , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA