Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 844264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369524

RESUMO

Fomitiporia mediterranea is a Basidiomycetes fungus associated with some of the Esca complex diseases and responsible for decay in grapevine wood. Its role in the onset of foliar symptoms has recently been reconsidered, mainly after evidence showing a reduction in foliar symptom expression after removal of rotten wood. The study of its degradation pathways has already been approached by other authors, and with this study much information is consolidated. A microscopic observation of degraded wood provides a first approach to the characterization of F. mediterranea modalities of wood cellular structure degradation. The decay of grapevine wood was reproduced in vitro, and the measurement of each wood-forming polymer loss highlighted characteristics of F. mediterranea common to selective white rot and showed how fungal strain and vine variety are factors determining the wood degradation. All these observations were supported by the analysis of the laccase and manganese peroxidase enzyme activity, as well as by the expression of the genes coding 6 putative laccase isoforms and 3 manganese peroxidase isoforms, thereby highlighting substantial intraspecific variability.

2.
PLoS One ; 16(2): e0246693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606728

RESUMO

The grapevine berry surface is covered by a cuticle consisting of cutin and various lipophilic wax compounds. The latter build the main barrier for transpirational water loss and protect the fruit against environmental factors e.g. pests, mechanical impacts or radiation. The integrety of the fruit surface is one important key factor for post-harvest quality and storage of fruits. Nonetheless, the developmental pattern of cuticular wax was so far only investigated for a very limited number of fruits. Therefore, we performed comparative investigations on the compositional and morphological nature of epicuticular wax crystals and underlying wax during fruit development in Vitis vinifera. The main compound oleanolic acid belongs to the pentacyclic triterpenoids, which occur very early in the development in high amounts inside the cuticle. The amount increases until veraison and decreases further during ripening. In general, very-long chain aliphatic (VLCA) compounds are present in much smaller amounts and alcohols and aldehydes follow the same trend during development. In contrast, the amount of fatty acids constantly increases from fruit set to ripening while wax esters only occur in significant amount at veraison and increase further. Wax crystals at the fruit surface are solely composed of VLCAs and the morphology changes during development according to the compositional changes of the VLCA wax compounds. The remarkable compositional differences between epicuticular wax crystals and the underlying wax are important to understand in terms of studying grape-pest interactions or the influence of environmental factors, since only wax crystals directly face the environment.


Assuntos
Frutas/crescimento & desenvolvimento , Vitis/metabolismo , Ceras/química , Ácidos Graxos/análise , Frutas/metabolismo , Lipídeos de Membrana/metabolismo , Ácido Oleanólico/análise , Transpiração Vegetal/fisiologia , Vitis/crescimento & desenvolvimento , Ceras/análise , Ceras/metabolismo
3.
Front Plant Sci ; 12: 808365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222454

RESUMO

Botrytis bunch rot is one of the economically most important fungal diseases in viticulture (aside from powdery mildew and downy mildew). So far, no active defense mechanisms and resistance loci against the necrotrophic pathogen are known. Since long, breeders are mostly selecting phenotypically for loose grape bunches, which is recently the most evident trait to decrease the infection risk of Botrytis bunch rot. This study focused on plant phenomics of multiple traits by applying fast sensor technologies to measure berry impedance (Z REL ), berry texture, and 3D bunch architecture. As references, microscopic determined cuticle thickness (MS CT ) and infestation of grapes with Botrytis bunch rot were used. Z REL hereby is correlated to grape bunch density OIV204 (r = -0.6), cuticle thickness of berries (r = 0.61), mean berry diameter (r = -0.63), and Botrytis bunch rot (r = -0.7). However, no correlation between Z REL and berry maturity or berry texture was observed. In comparison to the category of traditional varieties (mostly susceptible), elite breeding lines show an impressive increased Z REL value (+317) and a 1-µm thicker berry cuticle. Quantitative trait loci (QTLs) on LGs 2, 6, 11, 15, and 16 were identified for Z REL and berry texture explaining a phenotypic variance of between 3 and 10.9%. These QTLs providing a starting point for the development of molecular markers. Modeling of Z REL and berry texture to predict Botrytis bunch rot resilience revealed McFadden R 2 = 0.99. Taken together, this study shows that in addition to loose grape bunch architecture, berry diameter, Z REL , and berry texture values are probably additional parameters that could be used to identify and select Botrytis-resilient wine grape varieties. Furthermore, grapevine breeding will benefit from these reliable methodologies permitting high-throughput screening for additional resilience traits of mechanical and physical barriers to Botrytis bunch rot. The findings might also be applicable to table grapes and other fruit crops like tomato or blueberry.

4.
Front Plant Sci ; 12: 664636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968118

RESUMO

The cuticle-covered surface forms the interface between plant parts, including fruits, and their environment. The physical and chemical properties of fruit surfaces profoundly influence plant-frugivore interactions by shaping the susceptibility and suitability of the host for the attacker. Grapevine (Vitis vinifera, Vitaceae) serves as one of the various host plants of the spotted wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), which is invasive in several parts of the world and can cause major crop losses. The susceptibility of wine towards this pest species differs widely among varieties. The objective of our study was to identify physical and chemical traits of the berry surface that may explain the differences in susceptibility of five grape varieties to D. suzukii. Both preferences of adult D. suzukii and offspring performance on intact versus dewaxed (epicuticular wax layer mechanically removed) grape berries were investigated in dual-choice assays. Moreover, the morphology and chemical composition of cuticular waxes and cutin of the different varieties were analyzed. Bioassays revealed that the epicuticular wax layer of most tested grape varieties influenced the preference behavior of adult flies; even less susceptible varieties became more susceptible after removal of these waxes. In contrast, neither offspring performance nor berry skin firmness were affected by the epicuticular wax layer. The wax morphology and the composition of both epi- and intracuticular waxes differed pronouncedly, especially between more and less susceptible varieties, while cutin was dominated by ω-OH-9/10-epoxy-C18 acid and the amount was comparable among varieties within sampling time. Our results highlight the underestimated role of the epicuticular surface and cuticle integrity in grape susceptibility to D. suzukii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA