Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 291: 112550, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33965707

RESUMO

A key pursuit in contemporary ecology is to differentiate regime shifts that are truly irreversible from those that are hysteretic. Many ecological regime shifts have been labeled as irreversible without exploring the full range of variability in stabilizing feedbacks that have the potential to drive an ecological regime shift back towards a desirable ecological regime. Removing fire from grasslands can drive a regime shift to juniper woodlands that cannot be reversed using typical fire frequency and intensity thresholds, and has thus been considered irreversible. This study uses a unique, long-term experimental fire landscape co-dominated by grassland and closed-canopy juniper woodland to determine whether extreme fire can shift a juniper woodland regime back to grassland dominance using aboveground herbaceous biomass as an indicator of regime identity. We use a space-for-time substitute to quantify herbaceous biomass following extreme fire in juniper woodland up to 15 years post-fire and compare these with (i) 15 years of adjacent grassland recovery post-fire, (ii) unburned closed-canopy juniper woodland reference sites and (iii) unburned grassland reference sites. Our results show grassland dominance rapidly emerges following fires that operate above typical fire intensity thresholds, indicating that grassland-juniper woodlands regimes are hysteretic rather than irreversible. One year following fire, total herbaceous biomass in burned juniper stands was comparable to grasslands sites, having increased from 5 ± 3 g m-2 to 142 ± 42 g m-2 (+2785 ± 812 percent). Herbaceous dominance in juniper stands continued to persist 15-years after initial treatment, reaching a maximum of 337 ± 42 g m-2 eight years post-fire. In juniper encroached grasslands, fires that operate above typical fire intensity thresholds can provide an effective method to reverse juniper woodland regime shifts. This has major implications for regions where juniper encroachment threatens rancher-based economies and grassland biodiversity and provides an example of how to operationalize resilience theory to disentangle irreversible thresholds from hysteretic system behavior.


Assuntos
Ecossistema , Incêndios , Biodiversidade , Biomassa , Florestas , Pradaria
2.
Conserv Biol ; 32(4): 905-915, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29473208

RESUMO

A modern challenge for conservation biology is to assess the consequences of policies that adhere to assumptions of stationarity (e.g., historic norms) in an era of global environmental change. Such policies may result in unexpected and surprising levels of mitigation given future climate-change trajectories, especially as agriculture looks to protected areas to buffer against production losses during periods of environmental extremes. We assessed the potential impact of climate-change scenarios on the rates at which grasslands enrolled in the Conservation Reserve Program (CRP) are authorized for emergency harvesting (i.e., biomass removal) for agricultural use, which can occur when precipitation for the previous 4 months is below 40% of the normal or historical mean precipitation for that 4-month period. We developed and analyzed scenarios under the condition that policy will continue to operate under assumptions of stationarity, thereby authorizing emergency biomass harvesting solely as a function of precipitation departure from historic norms. Model projections showed the historical likelihood of authorizing emergency biomass harvesting in any given year in the northern Great Plains was 33.28% based on long-term weather records. Emergency biomass harvesting became the norm (>50% of years) in the scenario that reflected continued increases in emissions and a decrease in growing-season precipitation, and areas in the Great Plains with higher historical mean annual rainfall were disproportionately affected and were subject to a greater increase in emergency biomass removal. Emergency biomass harvesting decreased only in the scenario with rapid reductions in emissions. Our scenario-impact analysis indicated that biomass from lands enrolled in the CRP would be used primarily as a buffer for agriculture in an era of climatic change unless policy guidelines are adapted or climate-change projections significantly depart from the current consensus.


Assuntos
Clima , Conservação dos Recursos Naturais , Agricultura , Mudança Climática , Estações do Ano
3.
Ecol Evol ; 8(19): 9624-9632, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30386562

RESUMO

Afforestation is often viewed as the purposeful planting of trees in historically nonforested grasslands, but an unintended consequence is woody encroachment, which should be considered part of the afforestation process. In North America's temperate grassland biome, Eastern redcedar (Juniperus virginiana L.) is a native species used in tree plantings that aggressively invades in the absence of controlling processes. Cedar is a well-studied woody encroacher, but little is known about the degree to which cedar windbreaks, which are advocated for in agroforestry programs, are contributing to woody encroachment, what factors are associated with cedar spread from windbreaks, nor where encroachment from windbreaks is occurring in contemporary social-ecological landscapes. We used remotely sensed imagery to identify the presence and pattern of woody encroachment from windbreaks in the Nebraska Sandhills. We used multimodel inference to compare three classes of models representing three hypotheses about factors that could influence cedar spread: (a) windbreak models based on windbreak structure and design elements; (b) abiotic models focused on local environmental conditions; and (c) landscape models characterizing coupled human-natural features within the broader matrix. Woody encroachment was evident for 23% of sampled windbreaks in the Nebraska Sandhills. Of our candidate models, our inclusive landscape model carried 92% of the model weight. This model indicated that encroachment from windbreaks was more likely near roadways and less likely near farmsteads, other cedar plantings, and waterbodies, highlighting strong social ties to the distribution of woody encroachment from tree plantings across contemporary landscapes. Our model findings indicate where additional investments into cedar control can be prioritized to prevent cedar spread from windbreaks. This approach can serve as a model in other temperate regions to identify where woody encroachment resulting from temperate agroforestry programs is emerging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA