Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Genome Res ; 31(3): 372-379, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547183

RESUMO

The Amazon molly is a unique clonal fish species that originated from an interspecies hybrid between Poecilia species P. mexicana and P. latipinna It reproduces by gynogenesis, which eliminates paternal genomic contribution to offspring. An earlier study showed that Amazon molly shows biallelic expression for a large portion of the genome, leading to two main questions: (1) Are the allelic expression patterns from the initial hybridization event stabilized or changed during establishment of the asexual species and its further evolution? (2) Is allelic expression biased toward one parental allele a stochastic or adaptive process? To answer these questions, the allelic expression of P. formosa siblings was assessed to investigate intra- and inter-cohort allelic expression variability. For comparison, interspecies hybrids between P. mexicana and P. latipinna were produced in the laboratory to represent the P. formosa ancestor. We have identified inter-cohort and intra-cohort variation in parental allelic expression. The existence of inter-cohort divergence suggests functional P. formosa allelic expression patterns do not simply reflect the atavistic situation of the first interspecies hybrid but potentially result from long-term selection of transcriptional fitness. In addition, clonal fish show a transcriptional trend representing minimal intra-clonal variability in allelic expression patterns compared to the corresponding hybrids. The intra-clonal similarity in gene expression translates to sophisticated genetic functional regulation at the individuum level. These findings suggest the parental alleles inherited by P. formosa form tightly regulated genetic networks that lead to a stable transcriptomic landscape within clonal individuals.


Assuntos
Alelos , Poecilia/genética , Transcriptoma , Animais , Feminino , Regulação da Expressão Gênica , Hibridização Genética , Masculino
2.
Proc Biol Sci ; 290(1992): 20222115, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722081

RESUMO

Mapping the eco-evolutionary factors shaping the development of animals' behavioural phenotypes remains a great challenge. Recent advances in 'big behavioural data' research-the high-resolution tracking of individuals and the harnessing of that data with powerful analytical tools-have vastly improved our ability to measure and model developing behavioural phenotypes. Applied to the study of behavioural ontogeny, the unfolding of whole behavioural repertoires can be mapped in unprecedented detail with relative ease. This overcomes long-standing experimental bottlenecks and heralds a surge of studies that more finely define and explore behavioural-experiential trajectories across development. In this review, we first provide a brief guide to state-of-the-art approaches that allow the collection and analysis of high-resolution behavioural data across development. We then outline how such approaches can be used to address key issues regarding the ecological and evolutionary factors shaping behavioural development: developmental feedbacks between behaviour and underlying states, early life effects and behavioural transitions, and information integration across development.


Assuntos
Big Data , Evolução Biológica , Animais
3.
Proc Biol Sci ; 289(1978): 20220731, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35858068

RESUMO

Understanding how individual differences arise and how their effects propagate through groups are fundamental issues in biology. Individual differences can arise from indirect genetic effects (IGE): genetically based variation in the conspecifics with which an individual interacts. Using a clonal species, the Amazon molly (Poecilia formosa), we test the hypothesis that IGE can propagate to influence phenotypes of the individuals that do not experience them firsthand. We tested this by exposing genetically identical Amazon mollies to conspecific social partners of different clonal lineages, and then moving these focal individuals to new social groups in which they were the only member to have experienced the IGE. We found that genetically different social environments resulted in the focal animals experiencing different levels of aggression, and that these IGE carried over into new social groups to influence the behaviour of naive individuals. These data reveal that IGE can cascade beyond the individuals that experience them. Opportunity for cascading IGE is ubiquitous, especially in species with long-distance dispersal or fission-fusion group dynamics. Cascades could amplify (or mitigate) the effects of IGE on trait variation and on evolutionary trajectories. Expansion of the IGE framework to include cascading and other types of carry-over effects will therefore improve understanding of individual variation and social evolution and allow more accurate prediction of population response to changing environments.


Assuntos
Poecilia , Agressão , Animais , Evolução Biológica , Imunoglobulina E/genética , Poecilia/fisiologia
4.
Biol Lett ; 16(9): 20200436, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32933404

RESUMO

Understanding the emergence of collective behaviour has long been a key research focus in the natural sciences. Besides the fundamental role of social interaction rules, a combination of theoretical and empirical work indicates individual speed may be a key process that drives the collective behaviour of animal groups. Socially induced changes in speed by interacting animals make it difficult to isolate the effects of individual speed on group-level behaviours. Here, we tackled this issue by pairing guppies with a biomimetic robot. We used a closed-loop tracking and feedback system to let a robotic fish naturally interact with a live partner in real time, and programmed it to strongly copy and follow its partner's movements while lacking any preferred movement speed or directionality of its own. We show that individual differences in guppies' movement speed were highly repeatable and in turn shaped key collective patterns: a higher individual speed resulted in stronger leadership, lower cohesion, higher alignment and better temporal coordination of the pairs. By combining the strengths of individual-based models and observational work with state-of-the-art robotics, we provide novel evidence that individual speed is a key, fundamental process in the emergence of collective behaviour.


Assuntos
Poecilia , Robótica , Animais , Comportamento Animal , Movimento , Comportamento Social
5.
J Anim Ecol ; 88(9): 1343-1354, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31131886

RESUMO

The role of sexual selection in the context of harvest-induced evolution is poorly understood. However, elevated and trait-selective harvesting of wild populations may change sexually selected traits, which in turn can affect mate choice and reproduction. We experimentally evaluated the potential for fisheries-induced evolution of mating behaviour and reproductive allocation in fish. We used an experimental system of zebrafish (Danio rerio) lines exposed to large, small or random (i.e. control) size-selective mortality. The large-harvested line represented a treatment simulating the typical case in fisheries where the largest individuals are preferentially harvested. We used a full factorial design of spawning trials with size-matched individuals to control for the systematic impact of body size during reproduction, thereby singling out possible changes in mating behaviour and reproductive allocation. Both small size-selective mortality and large size-selective mortality left a legacy on male mating behaviour by elevating intersexual aggression. However, there was no evidence for line-assortative reproductive allocation. Females of all lines preferentially allocated eggs to the generally less aggressive males of the random-harvested control line. Females of the large-harvested line showed enhanced reproductive performance, and males of the large-harvested line had the highest egg fertilization rate among all males. These findings can be explained as an evolutionary adaptation by which individuals of the large-harvested line display an enhanced reproductive performance early in life to offset the increased probability of adult mortality due to harvest. Our results suggest that the large-harvested line evolved behaviourally mediated reproductive adaptations that could increase the rate of recovery when populations adapted to high fishing pressure come into secondary contact with other populations.


Assuntos
Óvulo , Reprodução , Animais , Tamanho Corporal , Feminino , Pesqueiros , Masculino , Fenótipo
6.
Parasitol Res ; 118(9): 2531-2541, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286263

RESUMO

Visual performance and environmental conditions can influence both behavioral patterns and predator-prey interactions of fish. Eye parasites can impair their host's sensory performance with important consequences for the detection of prey, predators, and conspecifics. We used European perch (Perca fluviatilis) experimentally infected with the eye fluke Tylodelphys clavata and evaluated their feeding behavior and competitive ability under competition with non-infected conspecifics, in groups of four individuals, for two different prey species (Asellus aquaticus and Daphnia magna). To test whether the effect of T. clavata infection differs at different light conditions, we performed the experiments at two light intensities (600 and 6 lx). Foraging efficiency of perch was significantly affected by infection but not by light intensity. The distance at which infected fish attacked both prey species was significantly shorter in comparison to non-infected conspecifics. Additionally, infected fish more often unsuccessfully attacked A. aquaticus. Although the outcome of competition depended on prey species, there was a general tendency that non-infected fish consumed more of the available prey under both light intensities. Even though individual prey preferences for either A. aquaticus or D. magna were observed, we could not detect that infected fish change their prey preference to compensate for a reduced competitive foraging ability. As infection of T. clavata impairs foraging efficiency and competitive ability, infected fish would need to spend more time foraging to attain similar food intake as non-infected conspecifics; this presumably increases predation risk and potentially enhances transmission success to the final host.


Assuntos
Comportamento Alimentar/fisiologia , Percas/parasitologia , Comportamento Predatório/fisiologia , Trematódeos/patogenicidade , Visão Ocular/fisiologia , Animais , Oftalmopatias/parasitologia , Oftalmopatias/veterinária , Interações Hospedeiro-Parasita/fisiologia
7.
BMC Evol Biol ; 16: 138, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27338278

RESUMO

BACKGROUND: One aspect of premating isolation between diverging, locally-adapted population pairs is female mate choice for resident over alien male phenotypes. Mating preferences often show considerable individual variation, and whether or not certain individuals are more likely to contribute to population interbreeding remains to be studied. In the Poecilia mexicana-species complex different ecotypes have adapted to hydrogen sulfide (H2S)-toxic springs, and females from adjacent non-sulfidic habitats prefer resident over sulfide-adapted males. We asked if consistent individual differences in behavioral tendencies (animal personality) predict the strength and direction of the mate choice component of premating isolation in this system. RESULTS: We characterized focal females for their personality and found behavioral measures of 'novel object exploration', 'boldness' and 'activity in an unknown area' to be highly repeatable. Furthermore, the interaction term between our measures of exploration and boldness affected focal females' strength of preference (SOP) for the resident male phenotype in dichotomous association preference tests. High exploration tendencies were coupled with stronger SOPs for resident over alien mating partners in bold, but not shy, females. Shy and/or little explorative females had an increased likelihood of preferring the non-resident phenotype and thus, are more likely to contribute to rare population hybridization. When we offered large vs. small conspecific stimulus males instead, less explorative females showed stronger preferences for large male body size. However, this effect disappeared when the size difference between the stimulus males was small. CONCLUSIONS: Our results suggest that personality affects female mate choice in a very nuanced fashion. Hence, population differences in the distribution of personality types could be facilitating or impeding reproductive isolation between diverging populations depending on the study system and the male trait(s) upon which females base their mating decisions, respectively.


Assuntos
Preferência de Acasalamento Animal , Poecilia/fisiologia , Comportamento Sexual Animal , Animais , Tamanho Corporal , Ecossistema , Feminino , Hibridização Genética , Masculino , Personalidade , Fenótipo , Poecilia/genética , Reprodução , Isolamento Reprodutivo
8.
Proc Biol Sci ; 283(1830)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170711

RESUMO

Across a wide range of animal taxa, winners of previous fights are more likely to keep winning future contests, just as losers are more likely to keep losing. At present, such winner and loser effects are considered to be fairly transient. However, repeated experiences with winning and/or losing might increase the persistence of these effects, generating long-lasting consequences for social structure. To test this, we exposed genetically identical individuals of a clonal fish, the Amazon molly (Poecilia formosa), to repeated winning and/or losing dominance interactions during the first two months of their life. We subsequently investigated whether these experiences affected the fish's ability to achieve dominance in a hierarchy five months later after sexual maturity, a major life-history transition. Individuals that had only winning interactions early in life consistently ranked at the top of the hierarchy. Interestingly, individuals with only losing experience tended to achieve the middle dominance rank, whereas individuals with both winning and losing experiences generally ended up at the bottom of the hierarchy. In addition to demonstrating that early social interactions can have dramatic and long-lasting consequences for adult social behaviour and social structure, our work also shows that higher cumulative winning experience early in life can counterintuitively give rise to lower social rank later in life.


Assuntos
Comportamento Animal , Poecilia , Comportamento Social , Animais , Feminino
9.
BMC Ecol ; 16: 29, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27301694

RESUMO

BACKGROUND: Information transfer in mammalian communication networks is often based on the deposition of excreta in latrines. Depending on the intended receiver(s), latrines are either formed at territorial boundaries (between-group communication) or in core areas of home ranges (within-group communication). The relative importance of both types of marking behavior should depend, amongst other factors, on population densities and social group sizes, which tend to differ between urban and rural wildlife populations. Our study is the first to assess (direct and indirect) anthropogenic influences on mammalian latrine-based communication networks along a rural-to-urban gradient in European rabbits (Oryctolagus cuniculus) living in urban, suburban and rural areas in and around Frankfurt am Main (Germany). RESULTS: The proportion of latrines located in close proximity to the burrow was higher at rural study sites compared to urban and suburban ones. At rural sites, we found the largest latrines and highest latrine densities close to the burrow, suggesting that core marking prevailed. By contrast, latrine dimensions and densities increased with increasing distance from the burrow in urban and suburban populations, suggesting a higher importance of peripheral marking. CONCLUSIONS: Increased population densities, but smaller social group sizes in urban rabbit populations may lead to an increased importance of between-group communication and thus, favor peripheral over core marking. Our study provides novel insights into the manifold ways by which man-made habitat alterations along a rural-to-urban gradient directly and indirectly affect wildlife populations, including latrine-based communication networks.


Assuntos
Animais Selvagens/fisiologia , Coelhos/fisiologia , Distribuição Animal , Migração Animal , Animais , Ecossistema , Feminino , Masculino , População Rural , Reforma Urbana
10.
Biol Open ; 13(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314873

RESUMO

The thermal ecology of ectotherm animals has gained considerable attention in the face of human-induced climate change. Particularly in aquatic species, the experimental assessment of critical thermal limits (CTmin and CTmax) may help to predict possible effects of global warming on habitat suitability and ultimately species survival. Here we present data on the thermal limits of two endemic and endangered extremophile fish species, inhabiting a geothermally heated and sulfur-rich spring system in southern Mexico: The sulfur molly (Poecilia sulphuraria) and the widemouth gambusia (Gambusia eurystoma). Besides physiological challenges induced by toxic hydrogen sulfide and related severe hypoxia during the day, water temperatures have been previously reported to exceed those of nearby clearwater streams. We now present temperature data for various locations and years in the sulfur spring complex and conducted laboratory thermal tolerance tests (CTmin and CTmax) both under normoxic and severe hypoxic conditions in both species. Average CTmax limits did not differ between species when dissolved oxygen was present. However, critical temperature (CTmax=43.2°C) in P. sulphuraria did not change when tested under hypoxic conditions, while G. eurystoma on average had a lower CTmax when oxygen was absent. Based on this data we calculated both species' thermal safety margins and used a TDT (thermal death time) model framework to relate our experimental data to observed temperatures in the natural habitat. Our findings suggest that both species live near their thermal limits during the annual dry season and are locally already exposed to temperatures above their critical thermal limits. We discuss these findings in the light of possible physiological adaptions of the sulfur-adapted fish species and the anthropogenic threats for this unique system.


Assuntos
Extremófilos , Animais , Humanos , México , Temperatura , Peixes , Hipóxia , Oxigênio , Enxofre
11.
Biol Lett ; 9(1): 20121038, 2013 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-23234866

RESUMO

Male homosexual behaviour-although found in most extant clades across the Animal Kingdom-remains a conundrum, as same-sex mating should decrease male reproductive fitness. In most species, however, males that engage in same-sex sexual behaviour also mate with females, and in theory, same-sex mating could even increase male reproductive fitness if males improve their chances of future heterosexual mating. Females regularly use social information to choose a mate; e.g. male attractiveness increases after a male has interacted sexually with a female (mate choice copying). Here, we demonstrate that males of the tropical freshwater fish Poecilia mexicana increase their attractiveness to females not only by opposite-sex, but likewise, through same-sex interactions. Hence, direct benefits for males of exhibiting homosexual behaviour may help explain its occurrence and persistence in species in which females rely on mate choice copying as one component of mate quality assessment.


Assuntos
Preferência de Acasalamento Animal , Poecilia/fisiologia , Animais , Comportamento de Escolha , Feminino , Masculino , Predomínio Social
12.
Nat Commun ; 14(1): 7652, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001119

RESUMO

Recent studies have documented among-individual phenotypic variation that emerges in the absence of apparent genetic and environmental differences, but it remains an open question whether such seemingly stochastic variation has fitness consequences. We perform a life-history experiment with naturally clonal fish, separated directly after birth into near-identical (i.e., highly standardized) environments, quantifying 2522 offspring from 152 broods over 280 days. We find that (i) individuals differ consistently in the size of offspring and broods produced over consecutive broods, (ii) these differences are observed even when controlling for trade-offs between brood size, offspring size and reproductive onset, indicating individual differences in life-history productivity and (iii) early-life behavioral individuality in activity and feeding patterns, with among-individual differences in feeding being predictive of growth, and consequently offspring size. Thus, our study provides experimental evidence that even when minimizing genetic and environmental differences, systematic individual differences in life-history measures and ultimately fitness can emerge.


Assuntos
Peixes , Reprodução , Animais , Reprodução/genética , Variação Biológica da População
13.
Philos Trans R Soc Lond B Biol Sci ; 378(1874): 20220069, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36802783

RESUMO

Collective behaviour is widely accepted to provide a variety of antipredator benefits. Acting collectively requires not only strong coordination among group members, but also the integration of among-individual phenotypic variation. Therefore, groups composed of more than one species offer a unique opportunity to look into the evolution of both mechanistic and functional aspects of collective behaviour. Here, we present data on mixed-species fish shoals that perform collective dives. These repeated dives produce water waves capable of delaying and/or reducing the success of piscivorous bird attacks. The large majority of the fish in these shoals consist of the sulphur molly, Poecilia sulphuraria, but we regularly also found a second species, the widemouth gambusia, Gambusia eurystoma, making these shoals mixed-species aggregations. In a set of laboratory experiments, we found that gambusia were much less inclined to dive after an attack as compared with mollies, which almost always dive, though mollies dived less deep when paired with gambusia that did not dive. By contrast, the behaviour of gambusia was not influenced by the presence of diving mollies. The dampening effect of less responsive gambusia on molly diving behaviour can have strong evolutionary consequences on the overall collective waving behaviour as we expect shoals with a high proportion of unresponsive gambusia to be less effective at producing repeated waves. This article is part of a discussion meeting issue 'Collective behaviour through time'.


Assuntos
Comportamento de Massa , Poecilia , Animais , Aves , Comportamento Predatório
14.
Bioinspir Biomim ; 18(4)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015241

RESUMO

Collective motion is commonly modeled with static interaction rules between agents. Substantial empirical evidence indicates, however, that animals may adapt their interaction rules depending on a variety of factors and social contexts. Here, we hypothesized that leadership performance is linked to the leader's responsiveness to the follower's actions and we predicted that a leader is followed longer if it adapts to the follower's avoidance movements. We tested this prediction with live guppies that interacted with a biomimetic robotic fish programmed to act as a 'socially competent' leader. Fish that were avoiding the robot were approached more carefully in future approaches. In two separate experiments we then asked how the leadership performance of the socially competent robot leader differed to that of a robot leader that either approached all fish in the same, non-responsive, way or one that did change its approach behavior randomly, irrespective of the fish's actions. We found that (1) behavioral variability itself appears attractive and that socially competent robots are better leaders which (2) require fewer approach attempts to (3) elicit longer average following behavior than non-competent agents. This work provides evidence that social responsiveness to avoidance reactions plays a role in the social dynamics of guppies. We showcase how social responsiveness can be modeled and tested directly embedded in a living animal model using adaptive, interactive robots.


Assuntos
Robótica , Animais , Habilidades Sociais , Biomimética , Movimento , Peixes
15.
Nat Commun ; 13(1): 6419, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307437

RESUMO

Behavioral individuality is a ubiquitous phenomenon in animal populations, yet the origins and developmental trajectories of individuality, especially very early in life, are still a black box. Using a high-resolution tracking system, we mapped the behavioral trajectories of genetically identical fish (Poecilia formosa), separated immediately after birth into identical environments, over the first 10 weeks of their life at 3 s resolution. We find that (i) strong behavioral individuality is present at the very first day after birth, (ii) behavioral differences at day 1 of life predict behavior up to at least 10 weeks later, and (iii) patterns of individuality strengthen gradually over developmental time. Our results establish a null model for how behavioral individuality can develop in the absence of genetic and environmental variation and provide experimental evidence that later-in-life individuality can be strongly shaped by factors pre-dating birth like maternal provisioning, epigenetics and pre-birth developmental stochasticity.


Assuntos
Comportamento Animal , Poecilia , Animais
16.
Curr Biol ; 32(3): 708-714.e4, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34942081

RESUMO

The collective behavior of animals has attracted considerable attention in recent years, with many studies exploring how local interactions between individuals can give rise to global group properties.1-3 The functional aspects of collective behavior are less well studied, especially in the field,4 and relatively few studies have investigated the adaptive benefits of collective behavior in situations where prey are attacked by predators.5,6 This paucity of studies is unsurprising because predator-prey interactions in the field are difficult to observe. Furthermore, the focus in recent studies on predator-prey interactions has been on the collective behavior of the prey7-10 rather than on the behavior of the predator (but see Ioannou et al.11 and Handegard et al.12). Here we present a field study that investigated the anti-predator benefits of waves produced by fish at the water surface when diving down collectively in response to attacks of avian predators. Fish engaged in surface waves that were highly conspicuous, repetitive, and rhythmic involving many thousands of individuals for up to 2 min. Experimentally induced fish waves doubled the time birds waited until their next attack, therefore substantially reducing attack frequency. In one avian predator, capture probability, too, decreased with wave number and birds switched perches in response to wave displays more often than in control treatments, suggesting that they directed their attacks elsewhere. Taken together, these results support an anti-predator function of fish waves. The attack delay could be a result of a confusion effect or a consequence of waves acting as a perception advertisement, which requires further exploration.


Assuntos
Peixes , Comportamento Predatório , Animais , Aves/fisiologia , Peixes/fisiologia , Eventos de Massa , Comportamento Predatório/fisiologia
17.
Bioinspir Biomim ; 17(6)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36044889

RESUMO

The ability of an individual to predict the outcome of the actions of others and to change their own behavior adaptively is called anticipation. There are many examples from mammalian species-including humans-that show anticipatory abilities in a social context, however, it is not clear to what extent fishes can anticipate the actions of their interaction partners or what the underlying mechanisms are for that anticipation. To answer these questions, we let live guppies (Poecilia reticulata) interact repeatedly with an open-loop (noninteractive) biomimetic robot that has previously been shown to be an accepted conspecific. The robot always performed the same zigzag trajectory in the experimental tank that ended in one of the corners, giving the live fish the opportunity to learn both the location of the final destination as well as the specific turning movement of the robot over three consecutive trials. The live fish's reactions were categorized into a global anticipation, which we defined as relative time to reach the robot's final corner, and a local anticipation which was the relative time and location of the live fish's turns relative to robofish turns. As a proxy for global anticipation, we found that live fish in the last trial reached the robot's destination corner significantly earlier than the robot. Overall, more than 50% of all fish arrived at the destination before the robot. This is more than a random walk model would predict and significantly more compared to all other equidistant, yet unvisited, corners. As a proxy for local anticipation, we found fish change their turning behavior in response to the robot over the course of the trials. Initially, the fish would turn after the robot, which was reversed in the end, as they began to turn slightly before the robot in the final trial. Our results indicate that live fish are able to anticipate predictably behaving social partners both in regard to final movement locations as well as movement dynamics. Given that fish have been found to exhibit consistent behavioral differences, anticipation in fish could have evolved as a mechanism to adapt to different social interaction partners.


Assuntos
Poecilia , Robótica , Humanos , Animais , Robótica/métodos , Biomimética , Movimento , Poecilia/fisiologia , Mamíferos
18.
BMC Evol Biol ; 11: 190, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21726456

RESUMO

BACKGROUND: In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana). Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. RESULTS: In dichotomous choice tests predator-naïve (lab-reared) females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus). In contrast, predator experienced (wild-caught) females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. CONCLUSIONS: Our study highlights that (a) predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection), and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b) Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c) Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators.


Assuntos
Ciclídeos/fisiologia , Preferência de Acasalamento Animal , Poecilia/fisiologia , Comportamento Predatório , Animais , Feminino , Masculino
19.
Biol Lett ; 7(3): 349-51, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21208944

RESUMO

Mate choice as one element of sexual selection can be sensitive to public information from neighbouring individuals. Here, we demonstrate that males of the livebearing fish Poecilia mexicana gather complex social information when given a chance to familiarize themselves with rivals prior to mate choice. Focal males ceased to show mating preferences when being observed by a rival (which prevents rivals from copying mating decisions), but this effect was only seen when focal males have perceived rivals as sexually active. In addition, focal males that were observed by a familiar, sexually active rival showed a stronger behavioural response when rivals were larger and thus, more attractive to females. Our study illustrates an unparalleled adjustment in the expression of mating preferences based on social cues, and suggests that male fish are able to remember and strategically exploit information about rivals when performing mate choice.


Assuntos
Comportamento Competitivo , Preferência de Acasalamento Animal , Poecilia , Reconhecimento Psicológico , Animais , Feminino , Masculino , Seleção Genética
20.
Front Physiol ; 12: 740604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712149

RESUMO

The capacity to compensate for environmental change determines population persistence and biogeography. In ectothermic organisms, performance at different temperatures can be strongly affected by temperatures experienced during early development. Such developmental plasticity is mediated through epigenetic mechanisms that induce phenotypic changes within the animal's lifetime. However, epigenetic modifiers themselves are encoded by DNA so that developmental plasticity could itself be contingent on genetic diversity. In this study, we test the hypothesis that the capacity for developmental plasticity depends on a species' among-individual genetic diversity. To test this, we exploited a unique species complex that contains both the clonal, genetically identical Amazon molly (Poecilia formosa), and the sexual, genetically diverse Atlantic molly (Poecilia mexicana). We predicted that the greater among-individual genetic diversity in the Atlantic molly may increase their capacity for developmental plasticity. We raised both clonal and sexual mollies at either warm (28°C) or cool (22°C) temperatures and then measured locomotor capacity (critical sustained swimming performance) and unforced movement in an open field across a temperature gradient that simulated environmental conditions often experienced by these species in the wild. In the clonal Amazon molly, differences in the developmental environment led to a shift in the thermal performance curve of unforced movement patterns, but much less so in maximal locomotor capacity. In contrast, the sexual Atlantic mollies exhibited the opposite pattern: developmental plasticity was present in maximal locomotor capacity, but not in unforced movement. Thus our data show that developmental plasticity in clones and their sexual, genetically more diverse sister species is trait dependent. This points toward mechanistic differences in how genetic diversity mediates plastic responses exhibited in different traits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA