Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(5): 052501, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595245

RESUMO

We used the ^{138}Ba(d,α) reaction to carry out an in-depth study of states in ^{136}Cs, up to around 2.5 MeV. In this Letter, we place emphasis on hitherto unobserved states below the first 1^{+} level, which are important in the context of solar neutrino and fermionic dark matter (FDM) detection in large-scale xenon-based experiments. We identify for the first time candidate metastable states in ^{136}Cs, which would allow a real-time detection of solar neutrino and FDM events in xenon detectors, with high background suppression. Our results are also compared with shell-model calculations performed with three Hamiltonians that were previously used to evaluate the nuclear matrix element (NME) for ^{136}Xe neutrinoless double beta decay. We find that one of these Hamiltonians, which also systematically underestimates the NME compared with the others, dramatically fails to describe the observed low-energy ^{136}Cs spectrum, while the other two show reasonably good agreement.

2.
Phys Rev Lett ; 130(12): 122502, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027859

RESUMO

The excited states of N=44 ^{74}Zn were investigated via γ-ray spectroscopy following ^{74}Cu ß decay. By exploiting γ-γ angular correlation analysis, the 2_{2}^{+}, 3_{1}^{+}, 0_{2}^{+}, and 2_{3}^{+} states in ^{74}Zn were firmly established. The γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+}, 3_{1}^{+}, and 2_{3}^{+} states were measured, allowing for the extraction of relative B(E2) values. In particular, the 2_{3}^{+}→0_{2}^{+} and 2_{3}^{+}→4_{1}^{+} transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are discussed in terms of underlying shapes, as well as the role of neutron excitations across the N=40 gap. Enhanced axial shape asymmetry (triaxiality) is suggested to characterize ^{74}Zn in its ground state. Furthermore, an excited K=0 band with a significantly larger softness in its shape is identified. A shore of the N=40 "island of inversion" appears to manifest above Z=26, previously thought as its northern limit in the chart of the nuclides.

3.
Phys Rev Lett ; 127(11): 112701, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558922

RESUMO

We have performed the first direct measurement of the ^{83}Rb(p,γ) radiative capture reaction cross section in inverse kinematics using a radioactive beam of ^{83}Rb at incident energies of 2.4 and 2.7A MeV. The measured cross section at an effective relative kinetic energy of E_{cm}=2.393 MeV, which lies within the relevant energy window for core collapse supernovae, is smaller than the prediction of statistical model calculations. This leads to the abundance of ^{84}Sr produced in the astrophysical p process being higher than previously calculated. Moreover, the discrepancy of the present data with theoretical predictions indicates that further experimental investigation of p-process reactions involving unstable projectiles is clearly warranted.

4.
Phys Rev Lett ; 123(14): 142502, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702191

RESUMO

From detailed spectroscopy of ^{110}Cd and ^{112}Cd following the ß^{+}/electron-capture decay of ^{110,112}In and the ß^{-} decay of ^{112}Ag, very weak decay branches from nonyrast states are observed. The transition rates determined from the measured branching ratios and level lifetimes obtained with the Doppler-shift attenuation method following inelastic neutron scattering reveal collective enhancements that are suggestive of a series of rotational bands. In ^{110}Cd, a γ band built on the shape-coexisting intruder configuration is suggested. For ^{112}Cd, the 2^{+} and 3^{+} intruder γ-band members are suggested, the 0_{3}^{+} band is extended to spin 4^{+}, and the 0_{4}^{+} band is identified. The results are interpreted using beyond-mean-field calculations employing the symmetry conserving configuration mixing method with the Gogny D1S energy density functional and with the suggestion that the Cd isotopes exhibit multiple shape coexistence.

5.
Phys Rev Lett ; 118(26): 262502, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28707906

RESUMO

How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics has been the greatest challenge in answering this question. The chiral effective field theory description of the nuclear force now makes this possible but requires certain parameters that are not uniquely determined. Defining the nuclear force needs identification of observables sensitive to the different parametrizations. From a measurement of proton elastic scattering on ^{10}C at TRIUMF and ab initio nuclear reaction calculations, we show that the shape and magnitude of the measured differential cross section is strongly sensitive to the nuclear force prescription.

6.
Phys Rev Lett ; 116(17): 172501, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27176517

RESUMO

Precision measurements of superallowed Fermi ß-decay transitions, particularly for the lightest superallowed emitters ^{10}C and ^{14}O, set stringent limits on possible scalar current contributions to the weak interaction. In the present work, a discrepancy between recent measurements of the ^{10}C half-life is addressed through two high-precision half-life measurements, via γ-ray photopeak and ß counting, that yield consistent results for the ^{10}C half-life of T_{1/2}=19.2969±0.0074 s and T_{1/2}=19.3009±0.0017 s, respectively. The latter is the most precise superallowed ß-decay half-life measurement reported to date and the first to achieve a relative precision below 10^{-4}. A fit to the world superallowed ß-decay data including the ^{10}C half-life measurements reported here yields b_{F}=-0.0018±0.0021 (68% C.L.) for the Fierz interference term and C_{S}/C_{V}=+0.0009±0.0011 for the ratio of the weak scalar to vector couplings assuming left-handed neutrinos.

7.
Phys Med Biol ; 68(18)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37681308

RESUMO

Objective.The results of a follow-up experiment investigating a novel method for sub-milimetre range verification (RV) in proton therapy (PT) are presented.Approach.The method consists of implanting a hadron tumour marker (HTM) near the planned treatment volume, and measuring theγ-ray signals emitted as a result of activation by the proton beam. These signals are highly correlated with the energy of the beam impinging on the HTM and can provide an absolute measurement of the range of the beam relative to the position of the HTM, which is independent of any uncertainties in beam delivery.Main results.Three candidate HTM materials were identified and combined into a single composite HTM, which makes use of the strongest reaction in each material. The setup of the previous experiment was improved on by using high-purity germanium detectors to measure theγ-ray signal with a higher resolution than was previously achieved. A PMMA phantom was also used to simulate theγ-ray background from tissue activation. HTM RV using the data collected in this study yielded range measurements whose average deviation from the expected value was 0.13(22)mm.Significance.Range uncertainty in PT limits the prescribed treatment plan for cancer patients with large safety margins and constrains the direction of the proton beam in relation to any organ at risk. The sub-milimetre range uncertainty achieved in this study using HTM RV, if implemented clinically, would allow for a reduction in the size of safety margins, increasing the therapeutic window for PT.


Assuntos
Germânio , Terapia com Prótons , Humanos , Prótons , Biomarcadores Tumorais , Imagens de Fantasmas
8.
Phys Med Biol ; 68(19)2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747082

RESUMO

Objective.A new method to estimate the range of an ion beam in a patient during heavy-ion therapy was investigated, which was previously verified for application in proton therapy.Approach.The method consists of placing a hadron tumour marker (HTM) close to the tumour. As the treatment beam impinges on the HTM, the marker undergoes nuclear reactions. When the HTM material is carefully chosen, the activation results in the emission of several delayed, characteristicγrays, whose intensities are correlated with the remaining range inside the patient. When not just one but two reaction channels are investigated, the ratio between these twoγray emissions can be measured, and the ratio is independent of any beam delivery uncertainties.Main results.A proof-of-principle experiment with an16O ion beam and Ag foils as HTM was successfully executed. The107Ag(16O,x)112Sb and the107Ag(16O,x)114Sb reaction channels were identified as suitable for the HTM technique. When only oneγ-ray emission is measured, the resulting range-uncertainty estimation is at the 0.5 mm scale. When both channels are considered, a theoretical limit on the range uncertainty of a clinical fiducal marker was found to be ±290µm.Significance.Range uncertainty of a heavy-ion beam limits the prescribed treatment plan for cancer patients, especially the direction of the ion beam in relation to any organ at risk. An easy to implement range-verification technique which can be utilized during clinical treatment would allow treatment plans to take full advantage of the sharp fall-off of the Bragg peak without the risk of depositing excessive dose into healthy tissue.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Humanos , Biomarcadores Tumorais , Radioterapia com Íons Pesados/métodos , Terapia com Prótons/métodos , Incerteza , Método de Monte Carlo
9.
Phys Rev Lett ; 108(6): 062701, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401060

RESUMO

The neutron-rich nuclei 94,96Kr were studied via projectile Coulomb excitation at the REX-ISOLDE facility at CERN. Level energies of the first excited 2(+) states and their absolute E2 transition strengths to the ground state are determined and discussed in the context of the E(2(1)(+)) and B(E2;2(1)(+)→0(1)(+)) systematics of the krypton chain. Contrary to previously published results no sudden onset of deformation is observed. This experimental result is supported by a new proton-neutron interacting boson model calculation based on the constrained Hartree-Fock-Bogoliubov approach using the microscopic Gogny-D1M energy density functional.

10.
Phys Med Biol ; 66(2): 025005, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-32998122

RESUMO

In this work, a new method of range verification for proton therapy (PT) is experimentally demonstrated for the first time. If a metal marker is implanted near the tumour site, its response to proton activation will result in the emission of characteristic γ rays. The relative intensity of γ rays originating from competing fusion-evaporation reaction channels provides a unique signature of the average proton energy at the marker, and by extension the beam's range, in vivo and in real time. The clinical feasibility of this method was investigated at the PT facility at TRIUMF with a proof-of-principle experiment which irradiated a naturally-abundant molybdenum foil at various proton beam energies. Delayed characteristic γ rays were measured with two Compton-shielded LaBr3 scintillators. The technique was successfully demonstrated by relating the relative intensity of two γ-ray peaks to the energy of the beam at the Mo target, opening the door to future clinical applications where the range of the beam can be verified in real time.


Assuntos
Raios gama/uso terapêutico , Molibdênio , Terapia com Prótons/métodos , Análise Espectral , Humanos , Método de Monte Carlo
11.
Phys Rev Lett ; 105(25): 252501, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21231582

RESUMO

The "island of inversion" nucleus 32 Mg has been studied by a (t, p) two neutron transfer reaction in inverse kinematics at REX-ISOLDE. The shape coexistent excited 0+ state in 32 Mg has been identified by the characteristic angular distribution of the protons of the Δ L=0 transfer. The excitation energy of 1058 keV is much lower than predicted by any theoretical model. The low γ-ray intensity observed for the decay of this 0+ state indicates a lifetime of more than 10 ns. Deduced spectroscopic amplitudes are compared with occupation numbers from shell-model calculations.

12.
Phys Med Biol ; 65(24): 245047, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33331299

RESUMO

In this work, we propose a novel technique for in-vivo proton therapy range verification. This technique makes use of a molybdenum hadron tumour marker, implanted at a short distance from the clinical treatment volume. Signals emitted from the marker during treatment can provide a direct measurement of the proton beam energy at the marker's position. Fusion-evaporation reactions between the proton beam and marker nucleus result in the emission of delayed characteristic γ rays, which are detected off-beam for an improved signal-to-noise ratio. In order to determine the viability of this technique and to establish an experimental setup for future work, the Monte Carlo package GEANT4 was used in combination with ROOT to simulate a treatment scenario with the new method outlined in this work. These simulations show that the intensity of delayed γ rays produced from competing reactions yields a precise measurement of the range of the proton beam relative to the marker, with sub-millimetre uncertainty.


Assuntos
Raios gama , Método de Monte Carlo , Terapia com Prótons/métodos , Simulação por Computador , Humanos
13.
Phys Rev Lett ; 103(1): 012501, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19659139

RESUMO

The 1789 keV state in 30Mg was identified as the first excited 0+ state via its electric monopole (E0) transition to the ground state. The measured small value of rho2(E0,0(2)+-->0(1)+)=(26.2+/-7.5)x10(-3) implies within a two-level model a small mixing of competing configurations with largely different intrinsic quadrupole deformation near the neutron shell closure at N=20. Axially symmetric configuration mixing calculations identify the ground state of 30Mg to be based on neutron configurations below the N=20 shell closure, while the excited 0+ state mainly consists of two neutrons excited into the nu 1f7/2 orbital. The experimental result represents the first case where an E0 back decay from a strongly deformed second to the normal deformed first nuclear potential minimum well has been unambiguously identified, thus directly proving shape coexistence at the borderline of the much-debated "island of inversion."

14.
Phys Rev Lett ; 99(14): 142501, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17930664

RESUMO

Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 2(1)+ state in 78Zn could be firmly established and for the first time the 2+ --> 0(1)+ transition in 80Zn was observed at 1492(1) keV. B(E2,2(1)+ --> 0(1)+) values were extracted for (74,76,78,80)Zn and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, 80Zn is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a good N=50 shell closure and a strong Z=28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

15.
Phys Rev Lett ; 94(17): 172501, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15904283

RESUMO

We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy of 2.25 MeV/u together with a thin (nat)Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation gamma-ray yields the B(E2;0(+)gs-->2(+)1) value of 30Mg was determined to be 241(31)e2 fm4. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope 30Mg resides outside the "island of inversion."

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA