Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458234

RESUMO

AIMS: Many countries are in the process of designing a deep geological repository (DGR) for long-term storage of used nuclear fuel. For several designs, used fuel containers will be placed belowground, with emplacement tunnels being backfilled using a combination of highly compacted powdered bentonite clay buffer boxes surrounded by a granulated "gapfill" bentonite. To limit the potential for microbiologically influenced corrosion of used fuel containers, identifying conditions that suppress microbial growth is critical for sustainable DGR design. This study investigated microbial communities in powdered and gapfill bentonite clay incubated in oxic pressure vessels at dry densities between 1.1 g cm-3 (i.e. below repository target) and 1.6 g cm-3 (i.e. at or above repository target) as a 1-year time series. RESULTS: Our results showed an initial (i.e. 1 month) increase in the abundance of culturable heterotrophs associated with all dry densities <1.6 g cm-3, which reveals growth during transient low-pressure conditions associated with the bentonite saturation process. Following saturation, culturable heterotroph abundances decreased to those of starting material by the 6-month time point for all 1.4 and 1.6 g cm-3 pressure vessels, and the most probable numbers of culturable sulfate-reducing bacteria (SRB) remained constant for all vessels and time points. The 16S rRNA gene sequencing results showed a change in microbial community composition from the starting material to the 1-month time point, after which time most samples were dominated by sequences associated with Pseudomonas, Bacillus, Cupriavidus, and Streptomyces. Similar taxa were identified as dominant members of the culture-based community composition, demonstrating that the dominant members of the clay microbial communities are viable. Members of the spore-forming Desulfosporosinus genus were the dominant SRB for both clay and culture profiles. CONCLUSIONS: After initial microbial growth while bentonite was below target pressure in the early phases of saturation, microbial growth in pressure vessels with dry densities of at least 1.4 g cm-3 was eventually suppressed as bentonite neared saturation.


Assuntos
Bentonita , Resíduos Radioativos , Resíduos Radioativos/análise , Argila , RNA Ribossômico 16S/genética
3.
Phys Rev Lett ; 131(19): 191001, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000434

RESUMO

Detailed measurements of the spectral structure of cosmic-ray electrons and positrons from 10.6 GeV to 7.5 TeV are presented from over 7 years of observations with the CALorimetric Electron Telescope (CALET) on the International Space Station. The instrument, consisting of a charge detector, an imaging calorimeter, and a total absorption calorimeter with a total depth of 30 radiation lengths at normal incidence and a fine shower imaging capability, is optimized to measure the all-electron spectrum well into the TeV region. Because of the excellent energy resolution (a few percent above 10 GeV) and the outstanding e/p separation (10^{5}), CALET provides optimal performance for a detailed search of structures in the energy spectrum. The analysis uses data up to the end of 2022, and the statistics of observed electron candidates has increased more than 3 times since the last publication in 2018. By adopting an updated boosted decision tree analysis, a sufficient proton rejection power up to 7.5 TeV is achieved, with a residual proton contamination less than 10%. The observed energy spectrum becomes gradually harder in the lower energy region from around 30 GeV, consistently with AMS-02, but from 300 to 600 GeV it is considerably softer than the spectra measured by DAMPE and Fermi-LAT. At high energies, the spectrum presents a sharp break around 1 TeV, with a spectral index change from -3.15 to -3.91, and a broken power law fitting the data in the energy range from 30 GeV to 4.8 TeV better than a single power law with 6.9 sigma significance, which is compatible with the DAMPE results. The break is consistent with the expected effects of radiation loss during the propagation from distant sources (except the highest energy bin). We have fitted the spectrum with a model consistent with the positron flux measured by AMS-02 below 1 TeV and interpreted the electron+positron spectrum with possible contributions from pulsars and nearby sources. Above 4.8 TeV, a possible contribution from known nearby supernova remnants, including Vela, is addressed by an event-by-event analysis providing a higher proton-rejection power than a purely statistical analysis.

4.
Phys Rev Lett ; 130(21): 211001, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295105

RESUMO

We present the observation of a charge-sign dependent solar modulation of galactic cosmic rays (GCRs) with the Calorimetric Electron Telescope onboard the International Space Station over 6 yr, corresponding to the positive polarity of the solar magnetic field. The observed variation of proton count rate is consistent with the neutron monitor count rate, validating our methods for determining the proton count rate. It is observed by the Calorimetric Electron Telescope that both GCR electron and proton count rates at the same average rigidity vary in anticorrelation with the tilt angle of the heliospheric current sheet, while the amplitude of the variation is significantly larger in the electron count rate than in the proton count rate. We show that this observed charge-sign dependence is reproduced by a numerical "drift model" of the GCR transport in the heliosphere. This is a clear signature of the drift effect on the long-term solar modulation observed with a single detector.


Assuntos
Radiação Cósmica , Voo Espacial , Telescópios , Prótons , Elétrons
5.
Phys Rev Lett ; 130(17): 171002, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172251

RESUMO

We present the results of a direct measurement of the cosmic-ray helium spectrum with the CALET instrument in operation on the International Space Station since 2015. The observation period covered by this analysis spans from October 13, 2015, to April 30, 2022 (2392 days). The very wide dynamic range of CALET allowed for the collection of helium data over a large energy interval, from ∼40 GeV to ∼250 TeV, for the first time with a single instrument in low Earth orbit. The measured spectrum shows evidence of a deviation of the flux from a single power law by more than 8σ with a progressive spectral hardening from a few hundred GeV to a few tens of TeV. This result is consistent with the data reported by space instruments including PAMELA, AMS-02, and DAMPE and balloon instruments including CREAM. At higher energy we report the onset of a softening of the helium spectrum around 30 TeV (total kinetic energy). Though affected by large uncertainties in the highest energy bins, the observation of a flux reduction turns out to be consistent with the most recent results of DAMPE. A double broken power law is found to fit simultaneously both spectral features: the hardening (at lower energy) and the softening (at higher energy). A measurement of the proton to helium flux ratio in the energy range from 60 GeV/n to about 60 TeV/n is also presented, using the CALET proton flux recently updated with higher statistics.

6.
Phys Rev Lett ; 128(13): 131103, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35426700

RESUMO

The relative abundance of cosmic ray nickel nuclei with respect to iron is by far larger than for all other transiron elements; therefore it provides a favorable opportunity for a low background measurement of its spectrum. Since nickel, as well as iron, is one of the most stable nuclei, the nickel energy spectrum and its relative abundance with respect to iron provide important information to estimate the abundances at the cosmic ray source and to model the Galactic propagation of heavy nuclei. However, only a few direct measurements of cosmic-ray nickel at energy larger than ∼3 GeV/n are available at present in the literature, and they are affected by strong limitations in both energy reach and statistics. In this Letter, we present a measurement of the differential energy spectrum of nickel in the energy range from 8.8 to 240 GeV/n, carried out with unprecedented precision by the Calorimetric Electron Telescope (CALET) in operation on the International Space Station since 2015. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The particle's energy is measured by a homogeneous calorimeter (1.2 proton interaction lengths, 27 radiation lengths) preceded by a thin imaging section (3 radiation lengths) providing tracking and energy sampling. This Letter follows our previous measurement of the iron spectrum [1O. Adriani et al. (CALET Collaboration), Phys. Rev. Lett. 126, 241101 (2021).PRLTAO0031-900710.1103/PhysRevLett.126.241101], and it extends our investigation on the energy dependence of the spectral index of heavy elements. It reports the analysis of nickel data collected from November 2015 to May 2021 and a detailed assessment of the systematic uncertainties. In the region from 20 to 240 GeV/n our present data are compatible within the errors with a single power law with spectral index -2.51±0.07.

7.
Phys Rev Lett ; 129(25): 251103, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36608255

RESUMO

We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux in an energy interval from 8.4 GeV/n to 3.8 TeV/n based on the data collected by the Calorimetric Electron Telescope (CALET) during ∼6.4 yr of operation on the International Space Station. An update of the energy spectrum of carbon is also presented with an increase in statistics over our previous measurement. The observed boron flux shows a spectral hardening at the same transition energy E_{0}∼200 GeV/n of the C spectrum, though B and C fluxes have different energy dependences. The spectral index of the B spectrum is found to be γ=-3.047±0.024 in the interval 25

8.
Phys Rev Lett ; 129(10): 101102, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112450

RESUMO

A precise measurement of the cosmic-ray proton spectrum with the Calorimetric Electron Telescope (CALET) is presented in the energy interval from 50 GeV to 60 TeV, and the observation of a softening of the spectrum above 10 TeV is reported. The analysis is based on the data collected during ∼6.2 years of smooth operations aboard the International Space Station and covers a broader energy range with respect to the previous proton flux measurement by CALET, with an increase of the available statistics by a factor of ∼2.2. Above a few hundred GeV we confirm our previous observation of a progressive spectral hardening with a higher significance (more than 20 sigma). In the multi-TeV region we observe a second spectral feature with a softening around 10 TeV and a spectral index change from -2.6 to -2.9 consistently, within the errors, with the shape of the spectrum reported by DAMPE. We apply a simultaneous fit of the proton differential spectrum which well reproduces the gradual change of the spectral index encompassing the lower energy power-law regime and the two spectral features observed at higher energies.

9.
Langmuir ; 38(43): 13226-13237, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256513

RESUMO

Montmorillonite is the main crystalline mineral present in bentonite. It is an absorbent, swelling material; the physical chemistry underlying its ability to absorb water and swell occurs at the nanoscale, governed by electrical double-layer interactions. In turn, absorption and swelling lead to important changes in the macroscopic transport properties of the clay. Mesoscale models can help us establish a link between these nanoscale processes and macroscale properties, notably by providing a detailed description of its pore network. Models on the scale of hundreds to thousands of nanometers are required, which cannot realistically be handled using traditional all-atom molecular dynamics simulations. This work presents a coarse-grained (CG) mesoscale model of sodium montmorillonite. In our model, montmorillonite platelets are represented by two types of particles: central nonhydrogen-bonded particles and edge hydrogen-bonding particles. The particle interactions are described by two-body potentials, which were optimized based on all-atom molecular dynamics simulations. Specifically, several potential mean force calculations involving dry and hydrated montmorillonite were performed, using the ClayFF potential to calculate interatomic forces. The CG model was validated by testing the scalability of the model, testing its ability to reproduce potentials of mean force reported elsewhere in the literature, and by comparing the calculated elastic properties of a system containing 1000 Na montmorillonite platelets to experimentally measured elastic properties of bentonite. The simulated elastic properties obtained using our mesoscale model agree with these experimental values.

10.
Can J Microbiol ; 68(2): 73-90, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34648720

RESUMO

Canada is currently implementing a site selection process to identify a location for a deep geological repository (DGR) for the long-term storage of Canada's used nuclear fuel, wherein used nuclear fuel bundles will be sealed inside copper-coated carbon steel containers, encased in highly compacted bentonite clay buffer boxes, and sealed deep underground in a stable geosphere. Because a DGR must remain functional for a million years, it is important to examine ancient natural systems that serve as analogues for planned DGR components. Specifically, studying the microbiology of natural analogue components of a DGR is important for developing an understanding of the types of microorganisms that may be able to grow and influence the long-term stability of a DGR. This study explored the abundance, viability, and composition of microorganisms in several ancient natural analogues using a combination of cultivation and cultivation-independent approaches. Samples were obtained from the Tsukinuno bentonite deposit (Japan) that formed ∼10 mya, the Opalinus Clay formation (Switzerland) that formed ∼174 mya, and Canadian shield crystalline rock from Northern Ontario that formed ∼2.7 bya. Analysis of 16S rRNA gene amplicons revealed that three of the ten Tsukinuno bentonite samples analyzed were dominated by putative aerobic heterotrophs and fermenting bacteria from the phylum Actinobacteria, whereas five of the Tsukinuno bentonite samples were dominated by sequences associated with putative acidophilic chemolithoautotrophs capable of sulfur reduction. The remaining Tsukinuno bentonite samples, the Northern Ontario rock samples, and the Opalinus Clay samples generated inconsistent replicate 16S rRNA gene profiles and were associated primarily with contaminant sequences, suggesting that the microbial profiles detected were not sample-specific but spurious. Culturable aerobic heterotroph abundances were relatively low for all Tsukinuno bentonite samples, culturable anaerobic heterotrophs were only detected in half of the Tsukinuno samples, and sulfate-reducing bacteria (SRB) were only detected in one Tsukinuno sample by cultivation. Culture-specific 16S rRNA gene profiles from Tsukinuno clay samples demonstrated the presence of phyla Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes among aerobic heterotroph cultures and additional bacteria from the phyla Actinobacteria and Firmicutes from anaerobic heterotroph plate incubations. Only one nucleic acid sequence detected from a culture was also associated with its corresponding clay sample profile, suggesting that nucleic acids from culturable bacteria were relatively rare within the clay samples. Sequencing of DNA extracted from the SRB culture revealed that the taxon present in the culture was affiliated with the genus Desulfosporosinus, which has been found in related bentonite clay analyses. Although the crystalline rock and Opalinus Clay samples were associated with inconsistent, likely spurious 16S rRNA gene profiles, we show evidence for viable and detectable microorganisms within several Tsukinuno natural analogue bentonite samples.


Assuntos
Resíduos Radioativos , Bentonita/análise , Argila , DNA Bacteriano/genética , Ontário , Filogenia , RNA Ribossômico 16S/genética , Resíduos Radioativos/análise
11.
Phys Rev Lett ; 126(24): 241101, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34213922

RESUMO

The Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray iron over a wide energy interval. In this Letter a measurement of the iron spectrum is presented in the range of kinetic energy per nucleon from 10 GeV/n to 2.0 TeV/n allowing the inclusion of iron in the list of elements studied with unprecedented precision by space-borne instruments. The measurement is based on observations carried out from January 2016 to May 2020. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The energy is measured by a homogeneous calorimeter with a total equivalent thickness of 1.2 proton interaction lengths preceded by a thin (3 radiation lengths) imaging section providing tracking and energy sampling. The analysis of the data and the detailed assessment of systematic uncertainties are described and results are compared with the findings of previous experiments. The observed differential spectrum is consistent within the errors with previous experiments. In the region from 50 GeV/n to 2 TeV/n our present data are compatible with a single power law with spectral index -2.60±0.03.

12.
Phys Rev Lett ; 126(7): 071103, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666466

RESUMO

ANITA's fourth long-duration balloon flight in 2016 detected 29 cosmic-ray (CR)-like events on a background of 0.37_{-0.17}^{+0.27} anthropogenic events. CRs are mainly seen in reflection off the Antarctic ice sheets, creating a phase-inverted waveform polarity. However, four of the below-horizon CR-like events show anomalous noninverted polarity, a p=5.3×10^{-4} chance if due to background. All anomalous events are from locations near the horizon; ANITA-IV observed no steeply upcoming anomalous events similar to the two such events seen in prior flights.

13.
Phys Rev Lett ; 125(25): 251102, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416351

RESUMO

In this paper, we present the measurement of the energy spectra of carbon and oxygen in cosmic rays based on observations with the Calorimetric Electron Telescope on the International Space Station from October 2015 to October 2019. Analysis, including the detailed assessment of systematic uncertainties, and results are reported. The energy spectra are measured in kinetic energy per nucleon from 10 GeV/n to 2.2 TeV/n with an all-calorimetric instrument with a total thickness corresponding to 1.3 nuclear interaction length. The observed carbon and oxygen fluxes show a spectral index change of ∼0.15 around 200 GeV/n established with a significance >3σ. They have the same energy dependence with a constant C/O flux ratio 0.911±0.006 above 25 GeV/n. The spectral hardening is consistent with that measured by AMS-02, but the absolute normalization of the flux is about 27% lower, though in agreement with observations from previous experiments including the PAMELA spectrometer and the calorimetric balloon-borne experiment CREAM.

14.
Phys Rev Lett ; 122(18): 181102, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144869

RESUMO

In this paper, we present the analysis and results of a direct measurement of the cosmic-ray proton spectrum with the CALET instrument onboard the International Space Station, including the detailed assessment of systematic uncertainties. The observation period used in this analysis is from October 13, 2015 to August 31, 2018 (1054 days). We have achieved the very wide energy range necessary to carry out measurements of the spectrum from 50 GeV to 10 TeV covering, for the first time in space, with a single instrument the whole energy interval previously investigated in most cases in separate subranges by magnetic spectrometers (BESS-TeV, PAMELA, and AMS-02) and calorimetric instruments (ATIC, CREAM, and NUCLEON). The observed spectrum is consistent with AMS-02 but extends to nearly an order of magnitude higher energy, showing a very smooth transition of the power-law spectral index from -2.81±0.03 (50-500 GeV) neglecting solar modulation effects (or -2.87±0.06 including solar modulation effects in the lower energy region) to -2.56±0.04 (1-10 TeV), thereby confirming the existence of spectral hardening and providing evidence of a deviation from a single power law by more than 3σ.

15.
Phys Rev Lett ; 120(26): 261102, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004739

RESUMO

Extended results on the cosmic-ray electron + positron spectrum from 11 GeV to 4.8 TeV are presented based on observations with the Calorimetric Electron Telescope (CALET) on the International Space Station utilizing the data up to November 2017. The analysis uses the full detector acceptance at high energies, approximately doubling the statistics compared to the previous result. CALET is an all-calorimetric instrument with a total thickness of 30 X_{0} at normal incidence and fine imaging capability, designed to achieve large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum in the region below 1 TeV shows good agreement with Alpha Magnetic Spectrometer (AMS-02) data. In the energy region below ∼300 GeV, CALET's spectral index is found to be consistent with the AMS-02, Fermi Large Area Telescope (Fermi-LAT), and Dark Matter Particle Explorer (DAMPE), while from 300 to 600 GeV the spectrum is significantly softer than the spectra from the latter two experiments. The absolute flux of CALET is consistent with other experiments at around a few tens of GeV. However, it is lower than those of DAMPE and Fermi-LAT with the difference increasing up to several hundred GeV. The observed energy spectrum above ∼1 TeV suggests a flux suppression consistent within the errors with the results of DAMPE, while CALET does not observe any significant evidence for a narrow spectral feature in the energy region around 1.4 TeV. Our measured all-electron flux, including statistical errors and a detailed breakdown of the systematic errors, is tabulated in the Supplemental Material in order to allow more refined spectral analyses based on our data.

16.
Phys Rev Lett ; 121(16): 161102, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387639

RESUMO

We report on an upward traveling, radio-detected cosmic-ray-like impulsive event with characteristics closely matching an extensive air shower. This event, observed in the third flight of the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload, is consistent with a similar event reported in a previous flight. These events could be produced by the atmospheric decay of an upward-propagating τ lepton produced by a ν_{τ} interaction, although their relatively steep arrival angles create tension with the standard model neutrino cross section. Each of the two events have a posteriori background estimates of ≲10^{-2} events. If these are generated by τ-lepton decay, then either the charged-current ν_{τ} cross section is suppressed at EeV energies, or the events arise at moments when the peak flux of a transient neutrino source was much larger than the typical expected cosmogenic background neutrinos.

17.
Phys Rev Lett ; 119(18): 181101, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219544

RESUMO

First results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X_{0} and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152±0.016 (stat+syst). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.

18.
Phys Rev Lett ; 117(7): 071101, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563945

RESUMO

We report on four radio-detected cosmic-ray (CR) or CR-like events observed with the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload. Two of the four were previously identified as stratospheric CR air showers during the ANITA-I flight. A third stratospheric CR was detected during the ANITA-II flight. Here, we report on characteristics of these three unusual CR events, which develop nearly horizontally, 20-30 km above the surface of Earth. In addition, we report on a fourth steeply upward-pointing ANITA-I CR-like radio event which has characteristics consistent with a primary that emerged from the surface of the ice. This suggests a possible τ-lepton decay as the origin of this event, but such an interpretation would require significant suppression of the standard model τ-neutrino cross section.

19.
Faraday Discuss ; 180: 331-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954775

RESUMO

The successful development of scanning probe techniques to characterize corrosion in situ using multifunctional probes is intrinsically tied to surface topography signal decoupling from the measured electrochemical fluxes. One viable strategy is the shear force controlled scanning microcapillary method. Using this method, pulled quartz micropipettes with an aperture of 500 nm diameter were used to resolve small and large variations in topography in order to quantify the local corrosion rate of microgalvanically and galvanically corroded Mg alloys. To achieve topography monitoring of corroded surfaces, shear force feedback was employed to position the micropipette at a reproducible working height above the substrate. We present proof of concept measurements over a galvanic couple of a magnesium alloy (AE44) and mild steel along with a microgalvanically corroded ZEK100 Mg alloy, which illustrates the ability of shear force to track small (1.4 µm) and large (700 µm) topographic variations from high aspect ratio features. Furthermore, we demonstrate the robustness of the technique by acquiring topographic data for 4 mm along the magnesium-steel galvanic couple sample and a 250 × 30 µm topography map over the ZEK100 Mg alloy. All topography results were benchmarked using standard optical microscopies (profilometry and confocal laser scanning microscopy).

20.
ISME Commun ; 4(1): ycae024, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38500705

RESUMO

Combining multiple displacement amplification (MDA) with metagenomics enables the analysis of samples with extremely low DNA concentrations, making them suitable for high-throughput sequencing. Although amplification bias and nonspecific amplification have been reported from MDA-amplified samples, the impact of MDA on metagenomic datasets is not well understood. We compared three MDA methods (i.e. bulk MDA, emulsion MDA, and primase MDA) for metagenomic analysis of two DNA template concentrations (approx. 1 and 100 pg) derived from a microbial community standard "mock community" and two low biomass environmental samples (i.e. borehole fluid and groundwater). We assessed the impact of MDA on metagenome-based community composition, assembly quality, functional profiles, and binning. We found amplification bias against high GC content genomes but relatively low nonspecific amplification such as chimeras, artifacts, or contamination for all MDA methods. We observed MDA-associated representational bias for microbial community profiles, especially for low-input DNA and with the primase MDA method. Nevertheless, similar taxa were represented in MDA-amplified libraries to those of unamplified samples. The MDA libraries were highly fragmented, but similar functional profiles to the unamplified libraries were obtained for bulk MDA and emulsion MDA at higher DNA input and across these MDA libraries for the groundwater sample. Medium to low-quality bins were possible for the high input bulk MDA metagenomes for the most simple microbial communities, borehole fluid, and mock community. Although MDA-based amplification should be avoided, it can still reveal meaningful taxonomic and functional information from samples with extremely low DNA concentration where direct metagenomics is otherwise impossible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA