Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7927): 490-495, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104552

RESUMO

A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies1,2. A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity1,2. Recently, such rich phase diagrams have also been shown in correlated topological materials. In 2D kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons3,4, non-trivial topology5-7, chiral magnetic order8,9, superconductivity and CDW order10-15. Although CDW has been found in weakly electron-correlated non-magnetic AV3Sb5 (A = K, Rb, Cs)10-15, it has not yet been observed in correlated magnetic-ordered kagome lattice metals4,16-21. Here we report the discovery of CDW in the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe (refs. 16-19). The CDW in FeGe occurs at wavevectors identical to that of AV3Sb5 (refs. 10-15), enhances the AFM ordered moment and induces an emergent anomalous Hall effect22,23. Our findings suggest that CDW in FeGe arises from the combination of electron-correlations-driven AFM order and van Hove singularities (vHSs)-driven instability possibly associated with a chiral flux phase24-28, in stark contrast to strongly correlated copper oxides1,2 and nickelates29-31, in which the CDW precedes or accompanies the magnetic order.

2.
Phys Rev Lett ; 131(18): 186701, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977621

RESUMO

The Fe intercalated transition metal dichalcogenide (TMD), Fe_{1/3}NbS_{2}, exhibits remarkable resistance switching properties and highly tunable spin ordering phases due to magnetic defects. We conduct synchrotron x-ray scattering measurements on both underintercalated (x=0.32) and overintercalated (x=0.35) samples. We discover a new charge order phase in the overintercalated sample, where the excess Fe atoms lead to a zigzag antiferromagnetic order. The agreement between the charge and magnetic ordering temperatures, as well as their intensity relationship, suggests a strong magnetoelastic coupling as the mechanism for the charge ordering. Our results reveal the first example of a charge order phase among the intercalated TMD family and demonstrate the ability to stabilize charge modulation by introducing electronic correlations, where the charge order is absent in bulk 2H-NbS_{2} compared to other pristine TMDs.

3.
Nano Lett ; 22(3): 1151-1158, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35077182

RESUMO

Bi4I4 belongs to a novel family of quasi-one-dimensional (1D) topological insulators (TIs). While its ß phase was demonstrated to be a prototypical weak TI, the α phase, long thought to be a trivial insulator, was recently predicted to be a rare higher order TI. Here, we report the first gate tunable transport together with evidence for unconventional band topology in exfoliated α-Bi4I4 field effect transistors. We observe a Dirac-like longitudinal resistance peak and a sign change in the Hall resistance; their temperature dependences suggest competing transport mechanisms: a hole-doped insulating bulk and one or more gate-tunable ambipolar boundary channels. Our combined transport, photoemission, and theoretical results indicate that the gate-tunable channels likely arise from novel gapped side surface states, two-dimensional (2D) TI in the bottommost layer, and/or helical hinge states of the upper layers. Markedly, a gate-tunable supercurrent is observed in an α-Bi4I4 Josephson junction, underscoring the potential of these boundary channels to mediate topological superconductivity.

4.
Phys Rev Lett ; 128(21): 217203, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687434

RESUMO

The existence of long-range magnetic order in low-dimensional magnetic systems, such as the quasi-two-dimensional van der Waals (vdW) magnets, has attracted intensive studies of new physical phenomena. The vdW Fe_{N}GeTe_{2} (N=3, 4, 5; FGT) family is exceptional, owing to its vast tunability of magnetic properties. In particular, a ferromagnetic ordering temperature (T_{C}) above room temperature at N=5 (F5GT) is observed. Here, our study shows that, by nickel (Ni) substitution of iron in F5GT, a record high T_{C}=478(6) K is achieved. Importantly, pervasive, beyond room-temperature ferromagnetism exists in almost the entire doping range of the phase diagram of Ni-F5GT. We argue that this striking observation in Ni-F5GT can be possibly due to several contributing factors, including increased 3D magnetic couplings due to the structural alterations.

5.
Phys Rev Lett ; 126(10): 107001, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784111

RESUMO

Interactions between nematic fluctuations, magnetic order and superconductivity are central to the physics of iron-based superconductors. Here we report on in-plane transverse acoustic phonons in hole-doped Sr_{1-x}Na_{x}Fe_{2}As_{2} measured via inelastic x-ray scattering, and extract both the nematic susceptibility and the nematic correlation length. By a self-contained method of analysis, for the underdoped (x=0.36) sample, which harbors a magnetically ordered tetragonal phase, we find it hosts a short nematic correlation length ξ∼10 Å and a large nematic susceptibility χ_{nem}. The optimal-doped (x=0.55) sample exhibits weaker phonon softening effects, indicative of both reduced ξ and χ_{nem}. Our results suggest short-range nematic fluctuations may favor superconductivity, placing emphasis on the nematic correlation length for understanding the iron-based superconductors.

6.
Phys Rev Lett ; 123(24): 247205, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922861

RESUMO

Spin nematics break spin-rotational symmetry while maintaining time-reversal symmetry, analogous to liquid crystal nematics that break spatial rotational symmetry while maintaining translational symmetry. Although several candidate spin nematics have been proposed, the identification and characterization of such a state remain challenging because the spin-nematic order parameter does not couple directly to experimental probes. KFe_{0.8}Ag_{1.2}Te_{2} (K_{5}Fe_{4}Ag_{6}Te_{10}, KFAT) is a local-moment magnet consisting of well-separated 2×2 Fe clusters, and in its ground state the clusters order magnetically, breaking both spin-rotational and time-reversal symmetries. Using uniform magnetic susceptibility and neutron scattering measurements, we find a small strain induces sizable spin anisotropy in the paramagnetic state of KFAT, manifestly breaking spin-rotational symmetry while retaining time-reversal symmetry, resulting in a strain-induced spin-nematic state in which the 2×2 clusters act as the spin analog of molecules in a liquid crystal nematic. The strain-induced spin anisotropy in KFAT allows us to probe its nematic susceptibility, revealing a divergentlike increase upon cooling, indicating the ordered ground state is driven by a spin-orbital entangled nematic order parameter.

7.
Phys Rev Lett ; 122(8): 087201, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932606

RESUMO

Superconductivity in the iron pnictides emerges from metallic parent compounds exhibiting intertwined stripe-type magnetic order and nematic order, with itinerant electrons suggested to be essential for both. Here we use x-ray and neutron scattering to show that a similar intertwined state is realized in semiconducting KFe_{0.8}Ag_{1.2}Te_{2} (K_{5}Fe_{4}Ag_{6}Te_{10}) without itinerant electrons. We find that Fe atoms in KFe_{0.8}Ag_{1.2}Te_{2} form isolated 2×2 blocks, separated by nonmagnetic Ag atoms. Long-range magnetic order sets in below T_{N}≈35 K, with magnetic moments within the 2×2 Fe blocks ordering into the stripe-type configuration. A nematic order accompanies the magnetic transition, manifest as a structural distortion that breaks the fourfold rotational symmetry of the lattice. The nematic orders in KFe_{0.8}Ag_{1.2}Te_{2} and iron pnictide parent compounds are similar in magnitude and in how they relate to the magnetic order, indicating a common origin. Since KFe_{0.8}Ag_{1.2}Te_{2} is a semiconductor without itinerant electrons, this indicates that local-moment magnetic interactions are integral to its magnetic and nematic orders, and such interactions may play a key role in iron-based superconductivity.

8.
Proc Natl Acad Sci U S A ; 113(23): 6397-402, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27199482

RESUMO

Magnetic anisotropy (MA) is one of the most important material properties for modern spintronic devices. Conventional manipulation of the intrinsic MA, i.e., magnetocrystalline anisotropy (MCA), typically depends upon crystal symmetry. Extrinsic control over the MA is usually achieved by introducing shape anisotropy or exchange bias from another magnetically ordered material. Here we demonstrate a pathway to manipulate MA of 3d transition-metal oxides (TMOs) by digitally inserting nonmagnetic 5d TMOs with pronounced spin-orbit coupling (SOC). High-quality superlattices comprising ferromagnetic La2/3Sr1/3MnO3 (LSMO) and paramagnetic SrIrO3 (SIO) are synthesized with the precise control of thickness at the atomic scale. Magnetic easy-axis reorientation is observed by controlling the dimensionality of SIO, mediated through the emergence of a novel spin-orbit state within the nominally paramagnetic SIO.

10.
Phys Rev Lett ; 119(18): 187001, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219610

RESUMO

We report on temperature-dependent pair distribution function measurements of Sr_{1-x}Na_{x}Fe_{2}As_{2}, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C_{4} phase. Quantitative refinements indicate that the instantaneous local structure in the C_{4} phase comprises fluctuating orthorhombic regions with a length scale of ∼2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. These results highlight the exceptionally large nematic susceptibility of iron-based superconductors and have significant implications for the magnetic C_{4} phase and the neighboring C_{2} and superconducting phases.

11.
Adv Mater ; 36(9): e2308555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38016700

RESUMO

2D layered materials with broken inversion symmetry are being extensively pursued as  spin source layers to realize high-efficiency magnetic switching. Such low-symmetry layered systems are, however, scarce. In addition, most layered magnets with perpendicular magnetic anisotropy show a low Curie temperature. Here, the experimental observation of spin-orbit torque magnetization self-switching at room temperature in a layered polar ferromagnetic metal, Fe2.5 Co2.5 GeTe2 is reported. The spin-orbit torque is generated from the broken inversion symmetry along the c-axis of the crystal. These results provide a direct pathway toward applicable 2D spintronic devices.

12.
Nat Commun ; 15(1): 2739, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548765

RESUMO

Non-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe5-δGeTe2. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.

13.
Nat Commun ; 15(1): 3828, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714653

RESUMO

Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures.

14.
Nat Commun ; 14(1): 4691, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542056

RESUMO

Antiferromagnetic spintronics is an emerging area of quantum technologies that leverage the coupling between spin and orbital degrees of freedom in exotic materials. Spin-orbit interactions allow spin or angular momentum to be injected via electrical stimuli to manipulate the spin texture of a material, enabling the storage of information and energy. In general, the physical process is intrinsically local: spin is carried by an electrical current, imparted into the magnetic system, and the spin texture will then rotate in the region of current flow. In this study, we show that spin information can be transported and stored "non-locally" in the material FexNbS2. We propose that collective modes can manipulate the spin texture away from the flowing current, an effect amplified by strong magnetoelastic coupling of the ordered state. This suggests a novel way to store and transport spin information in strongly spin-orbit coupled magnetic systems.

15.
Nat Commun ; 14(1): 3744, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353526

RESUMO

Control and understanding of ensembles of skyrmions is important for realization of future technologies. In particular, the order-disorder transition associated with the 2D lattice of magnetic skyrmions can have significant implications for transport and other dynamic functionalities. To date, skyrmion ensembles have been primarily studied in bulk crystals, or as isolated skyrmions in thin film devices. Here, we investigate the condensation of the skyrmion phase at room temperature and zero field in a polar, van der Waals magnet. We demonstrate that we can engineer an ordered skyrmion crystal through structural confinement on the µm scale, showing control over this order-disorder transition on scales relevant for device applications.


Assuntos
Engenharia , Imãs , Temperatura , Fenômenos Físicos , Fenômenos Magnéticos
16.
Nat Commun ; 14(1): 7512, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980419

RESUMO

During a band-gap-tuned semimetal-to-semiconductor transition, Coulomb attraction between electrons and holes can cause spontaneously formed excitons near the zero-band-gap point, or the Lifshitz transition point. This has become an important route to realize bulk excitonic insulators - an insulating ground state distinct from single-particle band insulators. How this route manifests from weak to strong coupling is not clear. In this work, using angle-resolved photoemission spectroscopy (ARPES) and high-resolution synchrotron x-ray diffraction (XRD), we investigate the broken symmetry state across the semimetal-to-semiconductor transition in a leading bulk excitonic insulator candidate system Ta2Ni(Se,S)5. A broken symmetry phase is found to be continuously suppressed from the semimetal side to the semiconductor side, contradicting the anticipated maximal excitonic instability around the Lifshitz transition. Bolstered by first-principles and model calculations, we find strong interband electron-phonon coupling to play a crucial role in the enhanced symmetry breaking on the semimetal side of the phase diagram. Our results not only provide insight into the longstanding debate of the nature of intertwined orders in Ta2NiSe5, but also establish a basis for exploring band-gap-tuned structural and electronic instabilities in strongly coupled systems.

17.
Sci Adv ; 8(12): eabm7103, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35319983

RESUMO

Novel magnetic ground states have been stabilized in two-dimensional (2D) magnets such as skyrmions, with the potential next-generation information technology. Here, we report the experimental observation of a Néel-type skyrmion lattice at room temperature in a single-phase, layered 2D magnet, specifically a 50% Co-doped Fe5GeTe2 (FCGT) system. The thickness-dependent magnetic domain size follows Kittel's law. The static spin textures and spin dynamics in FCGT nanoflakes were studied by Lorentz electron microscopy, variable-temperature magnetic force microscopy, micromagnetic simulations, and magnetotransport measurements. Current-induced skyrmion lattice motion was observed at room temperature, with a threshold current density, jth = 1 × 106 A/cm2. This discovery of a skyrmion lattice at room temperature in a noncentrosymmetric material opens the way for layered device applications and provides an ideal platform for studies of topological and quantum effects in 2D.

18.
Artigo em Inglês | MEDLINE | ID: mdl-37964898

RESUMO

Magnetic fluctuations is the leading candidate for pairing in cuprate, iron-based, and heavy fermion superconductors. This view is challenged by the recent discovery of nodeless superconductivity in CeCu2Si2, and calls for a detailed understanding of the corresponding magnetic fluctuations. Here, we mapped out the magnetic excitations in superconducting (S-type) CeCu2Si2 using inelastic neutron scattering, finding a strongly asymmetric dispersion for E≲1.5meV, which at higher energies evolves into broad columnar magnetic excitations that extend to E≳5meV. While low-energy magnetic excitations exhibit marked three-dimensional characteristics, the high-energy magnetic excitations in CeCu2Si2 are almost two-dimensional, reminiscent of paramagnons found in cuprate and iron-based superconductors. By comparing our experimental findings with calculations in the random-phase approximation,we find that the magnetic excitations in CeCu2Si2 arise from quasiparticles associated with its heavy electron band, which are also responsible for superconductivity. Our results provide a basis for understanding magnetism and superconductivity in CeCu2Si2, and demonstrate the utility of neutron scattering in probing band renormalization in heavy fermion metals.

19.
Nat Commun ; 12(1): 3952, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172740

RESUMO

The recent discovery of ferromagnetism in two-dimensional van der Waals crystals has provoked a surge of interest in the exploration of fundamental spin interaction in reduced dimensions. However, existing material candidates have several limitations, notably lacking intrinsic room-temperature ferromagnetic order and air stability. Here, motivated by the anomalously high Curie temperature observed in bulk diluted magnetic oxides, we demonstrate room-temperature ferromagnetism in Co-doped graphene-like Zinc Oxide, a chemically stable layered material in air, down to single atom thickness. Through the magneto-optic Kerr effect, superconducting quantum interference device and X-ray magnetic circular dichroism measurements, we observe clear evidences of spontaneous magnetization in such exotic material systems at room temperature and above. Transmission electron microscopy and atomic force microscopy results explicitly exclude the existence of metallic Co or cobalt oxides clusters. X-ray characterizations reveal that the substitutional Co atoms form Co2+ states in the graphitic lattice of ZnO. By varying the Co doping level, we observe transitions between paramagnetic, ferromagnetic and less ordered phases due to the interplay between impurity-band-exchange and super-exchange interactions. Our discovery opens another path to 2D ferromagnetism at room temperature with the advantage of exceptional tunability and robustness.

20.
Phys Rev B ; 101(23)2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34136736

RESUMO

We report experimental studies of a series of BaFe2S3-x Se x (0 ⩽ x ⩽ 3) single crystals and powder specimens using x-ray diffraction, neutron-diffraction, muon-spin-relaxation, and electrical transport measurements. A structural transformation from Cmcm (BaFe2S3) to Pnma (BaFe2Se3) was identified around x = 0.7 - 1. Neutron-diffraction measurements on the samples with x = 0.2, 0.4, and 0.7 reveal that the Néel temperature of the stripe antiferromagnetic order is gradually suppressed from ~120 to 85 K, while the magnitude of the ordered Fe2+ moments shows very little variation. Similarly, the block antiferromagnetic order in BaFe2Se3 remains robust for 1.5 ⩽ x ⩽ 3 with negligible variation in the ordered moment and a slight decrease of the Néel temperature from 250 K (x = 3) to 225 K (x = 1.5). The sample with x = 1 near the Cmcm and Pnma border shows coexisting, two-dimensional, short-range stripe- and block-type antiferromagnetic correlations. The system remains insulating for all x, but the thermal activation gap shows an abrupt increase when traversing the boundary from the Cmcm stripe phase to the Pnma block phase. The results demonstrate that the crystal structure, magnetic order, and electronic properties are strongly coupled in the BaFe2S3-x Se x system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA