Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828773

RESUMO

Noncanonical nucleic acid structures, particularly G-quadruplexes, have garnered significant attention as potential therapeutic targets in cancer treatment. Here, the recognition of G-quadruplex DNA by peptides derived from the Rap1 protein is explored, with the aim of developing novel peptide-based G-quadruplex ligands with enhanced selectivity and anticancer activity. Biophysical techniques were employed to assess the interaction of a peptide derived from the G-quadruplex-binding domain of the protein with various biologically relevant G-quadruplex structures. Through alanine scanning mutagenesis, key amino acids crucial for G-quadruplex recognition were identified, leading to the discovery of two peptides with improved G-quadruplex-binding properties. However, despite their in vitro efficacy, these peptides showed limited cell penetration and anticancer activity. To overcome this challenge, cell-penetrating peptide (CPP)-conjugated derivatives were designed, some of which exhibited significant cytotoxic effects on cancer cells. Interestingly, selected CPP-conjugated peptides exerted potent anticancer activity across various tumour types via a G-quadruplex-dependent mechanism. These findings underscore the potential of peptide-based G-quadruplex ligands in cancer therapy and pave the way for the development of novel therapeutic strategies targeting these DNA structures.

2.
Cell ; 142(2): 230-42, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20655466

RESUMO

Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5' exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres.


Assuntos
Antígenos de Neoplasias/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Senescência Celular , Dano ao DNA , Exodesoxirribonucleases , Humanos , Estrutura Terciária de Proteína
3.
Mol Cell ; 61(3): 449-460, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26748828

RESUMO

G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , Biomarcadores Tumorais/deficiência , Quadruplex G/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Ácidos Picolínicos/farmacologia , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores Tumorais/genética , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Masculino , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Interferência de RNA , Telômero/efeitos dos fármacos , Telômero/genética , Telômero/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ensaios Antitumorais Modelo de Xenoenxerto
4.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31000523

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with strong immunosuppressive activity that promote tumor growth. In this study, we describe a mechanism by which cancer cells control MDSCs in human cancers by upregulating TRF2, a protein required for telomere stability. Specifically, we showed that the TRF2 upregulation in cancer cells has extratelomeric roles in activating the expression of a network of genes involved in the biosynthesis of heparan sulfate proteoglycan, leading to profound changes in glycocalyx length and stiffness, as revealed by atomic force microscopy. This TRF2-dependent regulation facilitated the recruitment of MDSCs, their activation via the TLR2/MyD88/IL-6/STAT3 pathway leading to the inhibition of natural killer recruitment and cytotoxicity, and ultimately tumor progression and metastasis. The clinical relevance of these findings is supported by our analysis of cancer cohorts, which showed a correlation between high TRF2 expression and MDSC infiltration, which was inversely correlated with overall patient survival.


Assuntos
Glicocálix/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Evasão Tumoral/fisiologia , Animais , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Glicocálix/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/fisiologia , Células NIH 3T3 , Neoplasias/genética , Neoplasias/mortalidade , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Evasão Tumoral/genética
5.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835480

RESUMO

Aiming to identify highly effective and selective G-quadruplex ligands as anticancer candidates, five natural compounds were investigated here, i.e., the alkaloids Canadine, D-Glaucine and Dicentrine, as well as the flavonoids Deguelin and Millettone, selected as analogs of compounds previously identified as promising G-quadruplex-targeting ligands. A preliminary screening with the G-quadruplex on the Controlled Pore Glass assay proved that, among the investigated compounds, Dicentrine is the most effective ligand of telomeric and oncogenic G-quadruplexes, also showing good G-quadruplex vs. duplex selectivity. In-depth studies in solution demonstrated the ability of Dicentrine to thermally stabilize telomeric and oncogenic G-quadruplexes without affecting the control duplex. Interestingly, it showed higher affinity for the investigated G-quadruplex structures over the control duplex (Kb~106 vs. 105 M-1), with some preference for the telomeric over the oncogenic G-quadruplex model. Molecular dynamics simulations indicated that Dicentrine preferentially binds the G-quadruplex groove or the outer G-tetrad for the telomeric and oncogenic G-quadruplexes, respectively. Finally, biological assays proved that Dicentrine is highly effective in promoting potent and selective anticancer activity by inducing cell cycle arrest through apoptosis, preferentially targeting G-quadruplex structures localized at telomeres. Taken together, these data validate Dicentrine as a putative anticancer candidate drug selectively targeting cancer-related G-quadruplex structures.


Assuntos
Antineoplásicos , Quadruplex G , Neoplasias , Humanos , Ligantes , Simulação de Dinâmica Molecular , Antineoplásicos/farmacologia , Telômero/metabolismo
6.
Nucleic Acids Res ; 47(18): 9950-9966, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31504744

RESUMO

HMGB1 is a ubiquitous non-histone protein, which biological effects depend on its expression and subcellular location. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription and telomere maintenance. HMGB1 has been reported to bind preferentially to bent DNA as well as to noncanonical DNA structures like 4-way junctions and, more recently, to G-quadruplexes. These are four-stranded conformations of nucleic acids involved in important cellular processes, including telomere maintenance. In this frame, G-quadruplex recognition by specific proteins represents a key event to modulate physiological or pathological pathways. Herein, to get insights into the telomeric G-quadruplex DNA recognition by HMGB1, we performed detailed biophysical studies complemented with biological analyses. The obtained results provided information about the molecular determinants for the interaction and showed that the structural variability of human telomeric G-quadruplex DNA may have significant implications in HMGB1 recognition. The biological data identified HMGB1 as a telomere-associated protein in both telomerase-positive and -negative tumor cells and showed that HMGB1 gene silencing in such cells induces telomere DNA damage foci. Altogether, these findings provide a deeper understanding of telomeric G-quadruplex recognition by HMGB1 and suggest that this protein could actually represent a new target for cancer therapy.


Assuntos
Quadruplex G , Proteína HMGB1/genética , Conformação de Ácido Nucleico , Telômero/genética , DNA/química , DNA/genética , Escherichia coli/genética , Proteína HMGB1/química , Humanos , Telomerase/química , Telomerase/genética , Telômero/química
7.
Nucleic Acids Res ; 47(7): 3365-3382, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30698737

RESUMO

The telomeric protein TRF2 is overexpressed in several human malignancies and contributes to tumorigenesis even though the molecular mechanism is not completely understood. By using a high-throughput approach based on the multiplexed Luminex X-MAP technology, we demonstrated that TRF2 dramatically affects VEGF-A level in the secretome of cancer cells, promoting endothelial cell-differentiation and angiogenesis. The pro-angiogenic effect of TRF2 is independent from its role in telomere capping. Instead, TRF2 binding to a distal regulatory element promotes the expression of SULF2, an endoglucosamine-6-sulfatase that impairs the VEGF-A association to the plasma membrane by inducing post-synthetic modification of heparan sulfate proteoglycans (HSPGs). Finally, we addressed the clinical relevance of our findings showing that TRF2/SULF2 expression is a worse prognostic biomarker in colorectal cancer (CRC) patients.


Assuntos
Neoplasias do Colo/metabolismo , Sulfotransferases/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/metabolismo , Heparina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Neovascularização Patológica , Sulfatases , Sulfotransferases/biossíntese , Proteína 2 de Ligação a Repetições Teloméricas/deficiência , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769387

RESUMO

Besides the well-known double-helical conformation, DNA is capable of folding into various noncanonical arrangements, such as G-quadruplexes (G4s) and i-motifs (iMs), whose occurrence in gene promoters, replication origins, and telomeres highlights the breadth of biological processes that they might regulate. Particularly, previous studies have reported that G4 and iM structures may play different roles in controlling gene transcription. Anyway, molecular tools able to simultaneously stabilize/destabilize those structures are still needed to shed light on what happens at the biological level. Herein, a multicomponent reaction and a click chemistry functionalization were combined to generate a set of 31 bis-triazolyl-pyridine derivatives which were initially screened by circular dichroism for their ability to interact with different G4 and/or iM DNAs and to affect the thermal stability of these structures. All the compounds were then clustered through multivariate data analysis, based on such capability. The most promising compounds were subjected to a further biophysical and biological characterization, leading to the identification of two molecules simultaneously able to stabilize G4s and destabilize iMs, both in vitro and in living cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Compostos Azo/química , DNA/metabolismo , Quadruplex G , Osteossarcoma/tratamento farmacológico , Piridinas/química , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , DNA/química , Humanos , Osteossarcoma/patologia , Células Tumorais Cultivadas
9.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183038

RESUMO

A focused library of newly designed monomeric and dimeric naphthalene diimides (NDIs) was analyzed in its ability to recognize specific G-quadruplex (G4) structures discriminating duplex DNA. The best G4 ligands-according to an affinity chromatography-based screening method named G4-CPG-were tested on human cancer and healthy cells, inducing DNA damage at telomeres, and in parallel, showing selective antiproliferative activity on HeLa cancer cells with IC50 values in the low nanomolar range. CD and fluorescence spectroscopy studies allowed detailed investigation of the interaction in solution with different G4 and duplex DNA models of the most promising NDI of the series, as determined by combining the biophysical and biological assays' data.


Assuntos
Antineoplásicos/química , Quadruplex G/efeitos dos fármacos , Iminas/química , Naftalenos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Células HeLa , Humanos , Iminas/farmacologia , Ligantes , Naftalenos/farmacologia , Telômero/efeitos dos fármacos
10.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255744

RESUMO

The transcription factor CCCTC-binding factor (CTCF) modulates pleiotropic functions mostly related to gene expression regulation. The role of CTCF in large scale genome organization is also well established. A unifying model to explain relationships among many CTCF-mediated activities involves direct or indirect interactions with numerous protein cofactors recruited to specific binding sites. The co-association of CTCF with other architectural proteins such as cohesin, chromodomain helicases, and BRG1, further supports the interplay between master regulators of mammalian genome folding. Here, we report a comprehensive LC-MS/MS mapping of the components of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex co-associated with CTCF including subunits belonging to the core, signature, and ATPase modules. We further show that the localization patterns of representative SWI/SNF members significantly overlap with CTCF sites on transcriptionally active chromatin regions. Moreover, we provide evidence of a direct binding of the BRK-BRG1 domain to the zinc finger motifs 4-8 of CTCF, thus, suggesting that these domains mediate the interaction of CTCF with the SWI/SNF complex. These findings provide an updated view of the cooperative nature between CTCF and the SWI/SNF ATP-dependent chromatin remodeling complexes, an important step for understanding how these architectural proteins collaborate to shape the genome.


Assuntos
Fator de Ligação a CCCTC/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Dedos de Zinco/genética , Adenosina Trifosfatases/genética , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Complexos Multiproteicos/genética , Mapas de Interação de Proteínas/genética , Espectrometria de Massas em Tandem , Coesinas
11.
Chemistry ; 25(47): 11085-11097, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31219221

RESUMO

Naphthalene diimide (NDI) dyads exhibiting a different substitution pattern and linker length have been synthesised and evaluated as G-quadruplex (G4) ligands, by investigating their cytotoxicity in selected cell lines. The dyads with the long C7 linker exhibit extremely low IC50 values, below 10 nm, on different cancer cell lines. Contrary, the dyads with the shorter C4 linker were much less effective, with IC values increasing up to 1 µm. Among the three dyads with the longest linker, small differences in the IC50 values emerge, suggesting that the linker length plays a more important role than the substitution pattern. We have further shown that the dyads are able to induce cellular DNA damage response, which is not limited to the telomeric regions and is likely the origin of their cytotoxicity. Both absorption titration and dynamic light scattering of the most cytotoxic dyads in the presence of hTel22 highlight their ability to induce effective G4 aggregation, acting as non-covalent cross-linking agents.


Assuntos
Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Quadruplex G , Imidas/farmacologia , Naftalenos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidas/síntese química , Imidas/química , Ligantes , Metáfase/efeitos dos fármacos , Microscopia de Fluorescência , Naftalenos/síntese química , Naftalenos/química , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Telômero/efeitos dos fármacos , Telômero/metabolismo
12.
Nucleic Acids Res ; 45(4): 1820-1834, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27923994

RESUMO

Telomere repeat binding factor 2 (TRF2) has been increasingly recognized to be involved in telomere maintenance and DNA damage response. Here, we show that TRF2 directly binds SIRT6 in a DNA independent manner and that this interaction is increased upon replication stress. Knockdown of SIRT6 up-regulates TRF2 protein levels and counteracts its down-regulation during DNA damage response, leading to cell survival. Moreover, we report that SIRT6 deactetylates in vivo the TRFH domain of TRF2, which in turn, is ubiquitylated in vivo activating the ubiquitin-dependent proteolysis. Notably, overexpression of the TRF2cT mutant failed to be stabilized by SIRT6 depletion, demonstrating that the TRFH domain is required for its post-transcriptional modification. Finally, we report an inverse correlation between SIRT6 and TRF2 protein expression levels in a cohort of colon rectal cancer patients. Taken together our findings describe TRF2 as a novel SIRT6 substrate and demonstrate that acetylation of TRF2 plays a crucial role in the regulation of TRF2 protein stability, thus providing a new route for modulating its expression level during oncogenesis and damage response.


Assuntos
Dano ao DNA , Sirtuínas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Acetilação , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/farmacologia , Linhagem Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Imuno-Histoquímica , Modelos Moleculares , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteólise/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Sirtuínas/química , Especificidade por Substrato , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/genética , Ubiquitinação
13.
Nucleic Acids Res ; 44(4): 1579-90, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511095

RESUMO

Cancer stem cells (CSCs) have been identified in several solid malignancies and are now emerging as a plausible target for drug discovery. Beside the questionable existence of CSCs specific markers, the expression of CD133 was reported to be responsible for conferring CSC aggressiveness. Here, we identified two G-rich sequences localized within the introns 3 and 7 of the CD133 gene able to form G-quadruplex (G4) structures, bound and stabilized by small molecules. We further showed that treatment of patient-derived colon CSCs with G4-interacting agents triggers alternative splicing that dramatically impairs the expression of CD133. Interestingly, this is strongly associated with a loss of CSC properties, including self-renewing, motility, tumor initiation and metastases dissemination. Notably, the effects of G4 stabilization on some of these CSC properties are uncoupled from DNA damage response and are fully recapitulated by the selective interference of the CD133 expression.In conclusion, we provided the first proof of the existence of G4 structures within the CD133 gene that can be pharmacologically targeted to impair CSC aggressiveness. This discloses a class of potential antitumoral agents capable of targeting the CSC subpopulation within the tumoral bulk.


Assuntos
Antígenos CD/genética , Quadruplex G , Glicoproteínas/genética , Invasividade Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , Peptídeos/genética , Antígeno AC133 , Antígenos CD/química , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/química , Humanos , Células-Tronco Neoplásicas/patologia , Peptídeos/química , Biossíntese de Proteínas
14.
PLoS Genet ; 11(6): e1005167, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26110528

RESUMO

Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively suggest that AKTIP/Ft1 works in concert with TRF1 to facilitate telomeric DNA replication.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas/metabolismo , Telômero/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Ciclo Celular/genética , Células Cultivadas , Dano ao DNA/genética , Replicação do DNA , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Fibroblastos/fisiologia , Genes p53 , Humanos , Camundongos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas/genética , Telômero/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
15.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1362-1370, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27838395

RESUMO

BACKGROUND: During the last decade, guanine G-rich sequences folding into G-quadruplex (G4) structures have received a lot of attention and their biological role is now a matter of large debate. Rising amounts of experimental evidence have validated several G-rich motifs as molecular targets in cancer treatment. Despite that an increasing number of small molecules has been reported to possess excellent G4 stabilizing properties, none of them has progressed through the drug-development pipeline due to their poor drug-like properties. In this context, the identification of G4 ligands with more favorable pharmacological properties and with a well-defined target activity could be fruitful for anticancer therapy application. SCOPE OF REVIEW: This manuscript outlines the current state of knowledge regarding EMICORON, a G4-interactive molecule structurally and biologically similar, on the one side, to coronene and, on the other side, to a bay-monosubstituted perylene. MAJOR CONCLUSIONS: Overall this work evidences that EMICORON, a new promising G4 ligand, possesses a marked antitumoral activity both standing alone and in combination with chemotherapeutics. Moreover, EMICORON represents a good example of multimodal class of antitumoral drug, able to simultaneously affect multiple targets participating in several distinct signaling pathways, thus simplifying the treatment modalities and improving the selectivity against cancer cells. GENERAL SIGNIFICANCE: Due to the importance of G4 forming sequences in crucial biological processes participating in tumor progression, their successful targeting with small molecules could represent a very important innovation in the development of effective therapeutic strategies against cancer. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Desenho de Fármacos , Quadruplex G/efeitos dos fármacos , Guanosina/metabolismo , Imidas/farmacologia , Neoplasias/tratamento farmacológico , Piperidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , DNA de Neoplasias/química , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Guanosina/química , Humanos , Imidas/síntese química , Imidas/metabolismo , Ligantes , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Piperidinas/síntese química , Piperidinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Telômero/química , Telômero/efeitos dos fármacos , Telômero/metabolismo , Carga Tumoral/efeitos dos fármacos
16.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1341-1352, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28130159

RESUMO

BACKGROUND: G-quadruplex (G4) structures are key elements in the regulation of cancer cell proliferation and their targeting is deemed to be a promising strategy in anticancer therapy. METHODS: A tandem application of ligand-based virtual screening (VS) calculations together with the experimental G-quadruplex on Oligo Affinity Support (G4-OAS) assay was employed to discover novel G4-targeting compounds. The interaction of the selected compounds with the investigated G4 in solution was analysed through a series of biophysical techniques and their biological activity investigated by immunofluorescence and MTT assays. RESULTS: A focused library of 60 small molecules, designed as putative G4 groove binders, was identified through the VS. The G4-OAS experimental screening led to the selection of 7 ligands effectively interacting with the G4-forming human telomeric DNA. Evaluation of the biological activity of the selected compounds showed that 3 ligands of this sub-library induced a marked telomere-localized DNA damage response in human tumour cells. CONCLUSIONS: The combined application of virtual and experimental screening tools proved to be a successful strategy to identify new bioactive chemotypes able to target the telomeric G4 DNA. These compounds may represent useful leads for the development of more potent and selective G4 ligands. GENERAL SIGNIFICANCE: Expanding the repertoire of the available G4-targeting chemotypes with improved physico-chemical features, in particular aiming at the discovery of novel, selective G4 telomeric ligands, can help in developing effective anti-cancer drugs with fewer side effects. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Assuntos
Antineoplásicos/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Desenho de Fármacos , Quadruplex G/efeitos dos fármacos , Guanosina/metabolismo , Ensaios de Triagem em Larga Escala , Neoplasias/tratamento farmacológico , Telômero/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA de Neoplasias/química , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Relação Dose-Resposta a Droga , Guanosina/química , Humanos , Ligantes , Modelos Moleculares , Neoplasias/genética , Neoplasias/patologia , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Telômero/química , Telômero/genética , Telômero/metabolismo , Fatores de Tempo
17.
Nucleic Acids Res ; 43(3): 1759-69, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25618850

RESUMO

Here, with the aim of obtaining insight into the intriguing selectivity of G-quadruplex (G4) ligands toward cancer compared to normal cells, a genetically controlled system of progressive transformation in human BJ fibroblasts was analyzed. Among the different comparative evaluations, we found a progressive increase of DNA damage response (DDR) markers throughout the genome from normal toward immortalized and transformed cells. More interestingly, sensitivity to G4 ligands strongly correlated with the presence of a basal level of DNA damage, including at the telomeres, where the chromosome ends were exposed to the DDR without concurrent induction of DNA repair activity, as revealed by the lack of 53BP1 recruitment and telomere aberrations. The link between telomere uncapping and the response to G4 stabilization was directly assessed by showing that a partial TRF2 depletion, causing a basal level of telomere localized DDR, rendered telomerized fibroblasts prone to G4-induced telomere damage and anti-proliferative defects. Taken together these data strongly indicate that the presence of a basal level of telomere-associated DDR is a determinant of susceptibility to G4 stabilization.


Assuntos
Dano ao DNA , Quadruplex G/efeitos dos fármacos , Neoplasias/genética , Telômero , Western Blotting , Imunoprecipitação da Cromatina , Humanos , Hibridização in Situ Fluorescente , Células Tumorais Cultivadas
18.
Org Biomol Chem ; 14(30): 7238-49, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27383473

RESUMO

We report on the potential of a water-soluble tetracationic quaternary ammonium naphthalene diimide (NDI) as multifunctional agent of interest for theranostic applications. The DNA binding ability of this NDI has been investigated. NDI exhibits high binding constants for G-quadruplex DNA but it is not selective for this type of DNA. Taking advantage of its intrinsic fluorescence and singlet oxygen sensitizing ability, cellular uptake, cytotoxicity and photocytotoxicity have been investigated. The intense emission in the red/NIR allows monitoring of the cell permeability of this charged tetracationic NDI, accumulating into the cell nuclei. No dark cytotoxicity has been observed on selected tumor cell lines. Irradiation of the NDI loaded cells with red light reduces cell viability up to 40% and causes a significant increase of the percentage of cells expressing γH2AX foci indicating DNA damage. The presence of distinct DNA damage foci inside the nucleus suggests that the NDI molecule might induce DNA damage in specific sites. To the best of our knowledge this is the first NDI exhibiting PDT activity at µM concentration combined with low dark cytotoxicity.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Imidas/química , Imidas/toxicidade , Naftalenos/química , Naftalenos/toxicidade , Nanomedicina Teranóstica/métodos , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular , Análise Diferencial Térmica/métodos , Corantes Fluorescentes/metabolismo , Quadruplex G , Humanos , Imidas/metabolismo , Estrutura Molecular , Naftalenos/metabolismo , Imagem Óptica , Processos Fotoquímicos , Oxigênio Singlete/química , Relação Estrutura-Atividade , Termodinâmica
19.
Nucleic Acids Res ; 42(5): 2945-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335081

RESUMO

Tumor angiogenesis is mainly mediated by vascular endothelial growth factor (VEGF), a pro-angiogenic factor produced by cancer cells and active on the endothelium through the VEGF receptor 2 (VEGFR-2). Here we identify a G-rich sequence within the proximal promoter region of vegfr-2, able to form an antiparallel G-quadruplex (G4) structure. This G4 structure can be efficiently stabilized by small molecules with the consequent inhibition of vegfr-2 expression. Functionally, the G4-mediated reduction of VEGFR-2 protein causes a switching off of signaling components that, converging on actin cytoskeleton, regulate the cellular events leading to endothelial cell proliferation, migration and differentiation. As a result of endothelial cell function impairment, angiogenic process is strongly inhibited by G4 ligands both in vitro and in vivo. Interestingly, the G4-mediated antiangiogenic effect seems to recapitulate that observed by using a specific interference RNA against vegfr-2, and it is strongly antagonized by overexpressing the vegfr-2 gene. In conclusion, we describe the evidence for the existence of G4 in the promoter of vegfr-2, whose expression and function can be markedly inhibited by G4 ligands, thereby revealing a new, and so far undescribed, way to block VEGFR-2 as target for anticancer therapy.


Assuntos
Quadruplex G , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Regiões Promotoras Genéticas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neovascularização Fisiológica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
J Am Chem Soc ; 136(48): 16708-11, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25393214

RESUMO

The shelterin protein TRF2 has come to the limelight for its role in telomere maintenance and tumorigenesis. Herein, the application of rational design and synthesis allowed identifying the first TRF2TRFH binder able to elicit a marked DNA damage response in cancer cells. This work paves the way for the unprecedented employment of a chemical tool to finely tune specific mechanisms underlying telomere maintenance.


Assuntos
Desenho de Fármacos , Peptídeos Cíclicos/farmacologia , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Humanos , Modelos Moleculares , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA