Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Phys Chem Chem Phys ; 26(14): 10814-10823, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517064

RESUMO

Active control of the surface-enhanced Raman scattering (SERS) enhancement shows great potential for realizing smart detection of different molecules. However, conventional methods usually involve time-consuming structural design or a sophisticated fabrication process. Herein, we reported an electrically tunable field effect transistor (FET) comprising a WOx/MoOx hybrid as the SERS active layer. In the experiment, WOx/MoOx hybrids were first prepared by mixing different molar ratios of WOx and MoOx oxides. Then, R6G molecules were used as Raman reporters, showing that the intensity of the SERS signal observed on the most optimal hybrids (molar ratio = 1 : 3) could be increased by two times as high as that observed on a single WOx or MoOx based substrate, which was ascribed to enhanced charge transfer efficiency by the constructed nano-heterojunction between the WOx and MoOx oxides. Thereafter, a back-gate FET was fabricated on a SiO2/Si substrate, and the most optimal WOx/MoOx hybrid was deposited as the gate channel and the SERS active layer. After that, a series of gate biases (from -15 V to 15 V) were implemented to actively tune the SERS performance of the FET. It is evident that the SERS EF can be further tuned from 2.39 × 107 (-15 V) to 6.55 × 107 (+10 V), which is ∼7.4/4.1 times higher than that observed on the pure WOx device (8.81 × 106) or pure MoOx (1.61 × 107) device, respectively. Finally, the mechanism behind the electrical tuning strategy was investigated. It is revealed that a positive voltage would bend the conduction band down, which increased the electron density near the Fermi level. Consequently, it triggered the resonance charge transfer and significantly improved the SERS performance. In contrast, a negative gate voltage attracted the holes to the Fermi level, which deferred the charge transfer process, and caused the reduction of the SERS enhancement.

2.
Inorg Chem ; 62(23): 8892-8902, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37236171

RESUMO

Two-dimensional hybrid-organic-inorganic perovskite (2D-HOIP) lead bromide perovskite crystals have demonstrated great potential as scintillators with high light yields and fast decay times while also being low cost with solution-processable materials for wide energy radiation detection. Ion doping has been also shown to be a very promising avenue for improvements of the scintillation properties of 2D-HOIP crystals. In this paper, we discuss the effect of rubidium (Rb) doping on two previously reported 2D-HOIP single crystals, BA2PbBr4 and PEA2PbBr4. We observe that doping the perovskite crystals with Rb ions leads to an expansion of the crystal lattices of the materials, which also leads to narrowing of band gaps down to 84% of the pure compounds. Rb doping of BA2PbBr4 and PEA2PbBr4 shows a broadening in the photoluminescence and scintillation emissions of both perovskite crystals. Rb doping also leads to faster γ-ray scintillation decay times, as fast as 4.4 ns, with average decay time decreases of 15% and 8% for Rb-doped BA2PbBr4 and PEA2PbBr4, respectively, compared to those of undoped crystals. The inclusion of Rb ions also leads to a slightly longer afterglow, with residual scintillation still being below 1% after 5 s at 10 K, for both undoped and Rb-doped perovskite crystals. The light yield of both perovskites is significantly increased by Rb doping with improvements of 58% and 25% for BA2PbBr4 and PEA2PbBr4, respectively. This work shows that Rb doping leads to a significant enhancement of the 2D-HOIP crystal performance, which is of particular significance for high light yield and fast timing applications, such as photon counting or positron emission tomography.

3.
Phys Chem Chem Phys ; 25(48): 33081-33093, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38037878

RESUMO

The work function (WF) of perovskite materials is essential for developing optoelectronic devices enabling efficient charge transfer at their interfaces. Perovskite's WF can be tuned by MXenes, a new class of two-dimensional (2D) early transition metal carbides, nitrides, and carbonitrides. Their variable surface terminations or the possibility of introducing elemental dopants could advance perovskites. However, the influence of doped-MXenes on perovskite materials is still not fully understood and elaborated. This study provides mechanistic insight into verifying the tunability of MAPbI3 WF by hybridizing with fluorine-terminated Ti3C2Tx (F-MXene) and nitrogen-doped Ti3C2Tx (N-MXene). We first reveal the interfacial interaction between MAPbI3 and MXenes via X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and photoluminescence spectroscopy (PL). UPS supported by density functional theory (DFT) calculations allowed the description of the influence of F and N on MXene's WF. Furthermore, we developed MAPbI3/MXene heterostructures using F- and N-MXenes. The F-MXenes extended the most WF of MAPbI3 from 4.50 eV up to 3.00 eV, compared to only a small shift for N-MXene. The underlying mechanism was charge transfer from low WF F-MXene to MAPbI3, as demonstrated by PL quenching in MAPbI3/F-MXene heterostructures. Altogether, this work showcases the potential of fluorine-doped MXenes over nitrogen-doped MXenes in advancing perovskite heterostructures, thus opening a door for efficient optoelectronic devices.

4.
Opt Express ; 24(4): 3441-50, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907003

RESUMO

Buried multiple-quantum-well (MQW) 2D photonic crystal cavities (PhC) achieve low non-radiative recombination and high carrier confinement thus making them highly efficient emitters. In this study, we have investigated the lasing characteristics of high-ß(spontaneous emission coupling factor) buried MQW photonic crystal nanocavity lasers to clarify the theoretically-predicted thresholdless operation in high-ß nanolasers. The strong light and carrier confinement and low non-radiative recombination in our nanolasers have enabled us to clearly demonstrate very smooth lasing transition in terms of the light-in vs light-out curve and cavity linewidth. To clarify the thresholdless lasing behavior, we carried out a lifetime measurement and a photon correlation measurement, which also confirmed the predicted behavior. In addition, we systematically investigated the dependence of ß on the detuning frequency, which was in good agreement with a numerical simulation based on the finite-difference time-domain method. This is the first convincing systematic study of nanolasers based on an MQW close to the thresholdless regime.

5.
Nat Mater ; 13(3): 279-85, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24553654

RESUMO

Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high-Q nanocavity can be created by placing a single III­V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III­V nanocavity devices in Si photonic circuits.

6.
Nanotechnology ; 26(11): 115704, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25712797

RESUMO

We report controlled 1.1-1.6 µm luminescence in gold-free multi-stacked InAs/InP heterostructure nanowires (NWs). We realized the NWs by using an indium-particle-assisted vapor-liquid-solid synthesis approach. The growth temperature, as low as 320 °C, enables the formation of an atomically abrupt InP/InAs interface by supressing the diffusion and weakening the reservoir effect in the indium droplet. The low growth temperature also enables us to grow multi-stacked InAs/InP NWs in the axial direction without any growth on the NW side face. The high controllability of the growth technology ensures that the luminescence can be tailored by the thickness of InAs segment in InP NWs and cover the 1.3-1.5 µm telecommunication window range. By using the nanoscale-spatial-resolution technology combing cathodoluminescence with scanning electron microscopy, we directly correlated the site of different-thickness InAs segments with its luminescence property in a single NW and demonstrate the InAs-thickness-controlled energy of optical emission in 1.1-1.6 µm.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123962, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38309005

RESUMO

The Surface-enhanced Raman scattering (SERS) is an attractive optical detecting method with high sensitivity and detectivity, however challenges on large-area signal uniformity and complex spectra analysis methods always retards its wide application. Herein, a highly sensitive and uniform SERS detection strategy supported by porous carbon film/WO3-x nanosheets (PorC/WO3-x) based noble-metal-free SERS substrate and deep learning algorithm are reported. Experimentally, the PorC/WO3-x substrate was prepared by high-temperature annealing the PorC/WO3 films under the argon atmosphere. The defect density of the WO3 was controlled by tuning the reducing reaction time during the annealing process. The SERS performance was evaluated by using R6G as the Raman reporter, it showed that the SERS intensity obtained on the substrate with the optimal annealing time of 3 h was about 8 times as high as that obtained on the PorC/WO3 substrate without annealing treatment. And detection limit of 10-7 M and Raman enhancement factor of 106 could be achieved. Moreover, the above optimal SERS substrate was utilized to detect flavonoids of quercetin, 3-hydroxyflavone and flavone, and a deep learning algorithms was incorporated to identify the quercetin. It revealed that quercetin can be accurately detected within the above flavonoids, and lowest detectable concentration of 10-5 M can be achieved.

8.
Adv Mater ; 36(25): e2309410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38235521

RESUMO

The development of X-ray scintillators with ultrahigh light yields and ultrafast response times is a long sought-after goal. In this work, a fundamental mechanism that pushes the frontiers of ultrafast X-ray scintillator performance is theoretically predicted and experimentally demonstrated: the use of nanoscale-confined surface plasmon polariton modes to tailor the scintillator response time via the Purcell effect. By incorporating nanoplasmonic materials in scintillator devices, this work predicts over tenfold enhancement in decay rate and 38% reduction in time resolution even with only a simple planar design. The nanoplasmonic Purcell effect is experimentally demonstrated using perovskite scintillators, enhancing the light yield by over 120% to 88 ± 11 ph/keV, and the decay rate by over 60% to 2.0 ± 0.2 ns for the average decay time, and 0.7 ± 0.1 ns for the ultrafast decay component, in good agreement with the predictions of our theoretical framework. Proof-of-concept X-ray imaging experiments are performed using nanoplasmonic scintillators, demonstrating 182% enhancement in the modulation transfer function at four line pairs per millimeter spatial frequency. This work highlights the enormous potential of nanoplasmonics in optimizing ultrafast scintillator devices for applications including time-of-flight X-ray imaging and photon-counting computed tomography.

9.
J Phys Chem Lett ; 15(14): 3713-3720, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38546293

RESUMO

The remarkable brightness and rapid scintillation observed in perovskite single crystals (SCs) become even more striking when they are operated at cryogenic temperatures. In this study, we present advancements in enhancing the scintillation properties of methylammonium lead bromide (MAPbBr3) SCs by optimizing the synthesis process. We successfully synthesized millimeter-sized MAPbBr3 SCs with bright green luminescence under UV light. However, both MAPbBr3 (Control-1M and THF-0.4M) SCs display notable radioluminescence exclusively at low temperatures due to their phase transitions. Notably, the THF-0.4M SCs exhibit a remarkable improvement in radioluminescence light yield, surpassing Control-1M SCs more than 2-fold. Further, THF-0.4M SCs demonstrate an ultrafast decay component of 0.52 ns (82.2%) and a slower component of 1.80 ns (17.8%), contributing to a rapid scintillation response at low temperatures. Therefore, the amalgamation of ultrafast decay components and improved radioluminescence light yield equips THF-0.4M SCs to emerge as a top choice for perovskite scintillators for X-ray timing applications.

10.
ACS Appl Mater Interfaces ; 16(19): 25529-25539, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698765

RESUMO

Two-dimensional (2D) hybrid organic-inorganic perovskite (HOIP) crystals show promise as scintillating materials for wide-energy radiation detection, outperforming their three-dimensional counterparts. In this study, we synthesized single crystals of (PEA2-xBZAx)PbBr4 (x ranging from 0.1 to 2), utilizing phenethylammonium (C6H5CH2CH2NH3+) and benzylammonium (C6H5CH2NH3+) cations. These materials exhibit favorable optical and scintillation properties, rendering them suitable for high light yield (LY) and fast-response scintillators. Our investigation, employing various techniques such as X-ray diffraction (XRD), photoluminescence (PL), time-resolved (TR) PL, Raman spectroscopy, radioluminescence (RL), thermoluminescence (TL), and scintillation measurements, unveiled lattice strain induced by dual-organic cations in powder X-ray diffraction. Density functional theory analysis demonstrated a maximal 0.13 eV increase in the band gap with the addition of BZA cation addition. Notably, the largest Stokes shift of 0.06 eV was observed in (BZA)2PbBr4. The dual-organic cation crystals displayed >80% fast component scintillation decay time, which is advantageous for the scintillating process. Furthermore, we observed a dual-organic cations-induced enhancement of electron-hole transfer efficiency by up to 60%, with a contribution of >70% to the fast component of scintillation decay. The crystal with the lowest BZA concentration, (PEA1.9BZA0.1)PbBr4, demonstrated the highest LYs of 14.9 ± 1.5 ph/keV at room temperature. Despite a 55-70% decrease in LY for BZA concentrations >5%, simultaneous reductions in scintillation decay time (12-32%) may work for time-of-flight positron emission tomography and photon-counting computed tomography. Our work underscores the crucial role of dual-organic cations in advancing our understanding of 2D-HOIP crystals for materials science and radiation detection applications.

11.
Micromachines (Basel) ; 14(11)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38004920

RESUMO

ABO3 structures commonly known as perovskite are of high importance in advanced material science due to their interesting optical properties. Applications range from tunable band gaps, high absorption coefficients, and versatile electronic properties, making them ideal for solar cells to light-emitting diodes and even photodetectors. In this work, we present, for the first time, a nonlinear phenomenological bond model analysis of second harmonic generation (SHG) in tetragonal ABO3 with arbitrary input light polarization. We study the material symmetry and explore the strength of the nonlinear generalized third-rank tensorial elements, which can be exploited to produce a high SHG response if the incoming light polarization is correctly selected. We found that the calculated SHG intensity profile aligns well with existing experimental data. Additionally, as the incoming light polarization varies, we observed a smooth shift in the SHG intensity peak along with changes in the number of peaks. These observations confirm the results from existing rotational anisotropy SHG experiments. In addition, we show how spatial dispersion can contribute to the total SHG intensity. Our work highlights the possibility of studying relatively complex structures, such as ABO3, with minimal fitting parameters due to the power of the effective bond vector structure, enabling the introduction of an effective SHG hyperpolarizability rather than a full evaluation of the irreducible SHG tensor by group theoretical analysis. Such a simplification may well lead to a better understanding of the nonlinear properties in these classes of material and, in turn, can improve our understanding of the photovoltaic performance in ABO3 structures.

12.
J Colloid Interface Sci ; 650(Pt B): 1550-1590, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490835

RESUMO

Tricobalt tetroxide (Co3O4) has been developed as a promising photocatalyst material for various applications. Several reports have been published on the self-modification of Co3O4 to achieve optimal photocatalytic performance. The pristine Co3O4 alone is inadequate for photocatalysis due to the rapid recombination process of photogenerated (PG) charge carriers. The modification of Co3O4 can be extended through the introduction of doping elements, incorporation of supporting materials, surface functionalization, metal loading, and combination with other photocatalysts. The addition of doping elements and support materials may enhance the photocatalysis process, although these modifications have a slight effect on decreasing the recombination process of PG charge carriers. On the other hand, combining Co3O4 with other semiconductors results in a different PG charge carrier mechanism, leading to a decrease in the recombination process and an increase in photocatalytic activity. Therefore, this work discusses recent modifications of Co3O4 and their effects on its photocatalytic performance. Additionally, the modification effects, such as enhanced surface area, generation of oxygen vacancies, tuning the band gap, and formation of heterojunctions, are reviewed to demonstrate the feasibility of separating PG charge carriers. Finally, the formation and mechanism of these modification effects are also reviewed based on theoretical and experimental approaches to validate their formation and the transfer process of charge carriers.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38095359

RESUMO

MXenes, a class of two-dimensional materials, have garnered significant attention due to their versatile surface chemistry and customizable properties. In this study, we investigate the work function (WF) tuning capabilities of MXene Ti3C2Tx, where Tx denotes the surface termination, synthesized via both conventional hydrogen fluoride-etched and recently reported molten salt-etched routes. When MXene samples are subjected to gas phase reactions, WF variations exceeding 0.6 eV are achieved, highlighting the potential for precise WF control. Notably, the WF increases from ∼4.23 eV (in N-doped MXene etched using molten salt) to ∼4.85 eV (N-doped MXene etched using HF). Complementary density functional theory (DFT) calculations reveal WF tuning across a >1 eV range via modification of the surface with different terminal groups (bare metal, F*, O*, N*, and Cl*). These changes in WF are attributed to surface termination modifications and the formation of TiO2 and TiN phases during annealing. DFT calculations further unveil an inverse correlation between the WF and the electron affinity of surface terminations. The findings from this comprehensive study provide insights into the tunable WF of MXenes, paving the way for their potential applications as interfacial layers in photovoltaic, energy conversion, and storage technologies.

14.
J Phys Chem C Nanomater Interfaces ; 127(22): 10737-10747, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37313122

RESUMO

Quantum-well (QW) hybrid organic-inorganic perovskite (HOIP) crystals, e.g., A2PbX4 (A = BA, PEA; X = Br, I), demonstrated significant potentials as scintillating materials for wide energy radiation detection compared to their individual three-dimensional (3D) counterparts, e.g., BPbX3 (B = MA). Inserting 3D into QW structures resulted in new structures, namely A2BPb2X7 perovskite crystals, and they may have promising optical and scintillation properties toward higher mass density and fast timing scintillators. In this article, we investigate the crystal structure as well as optical and scintillation properties of iodide-based QW HOIP crystals, A2PbI4 and A2MAPb2I7. A2PbI4 crystals exhibit green and red emission with the fastest PL decay time <1 ns, while A2MAPb2I7 crystals exhibit a high mass density of >3.0 g/cm3 and tunable smaller bandgaps <2.1 eV resulting from quantum and dielectric confinement. We observe that A2PbI4 and PEA2MAPb2I7 show emission under X- and γ-ray excitations. We further observe that some QW HOIP iodide scintillators exhibit shorter radiation absorption lengths (∼3 cm at 511 keV) and faster scintillation decay time components (∼0.5 ns) compared to those of QW HOIP bromide scintillators. Finally, we investigate the light yields of iodide-based QW HOIP crystals at 10 K (∼10 photons/keV), while at room temperature they still show pulse height spectra with light yields between 1 and 2 photons/keV, which is still >5 times lower than those for bromides. The lower light yields can be the drawbacks of iodide-based QW HOIP scintillators, but the promising high mass density and decay time results of our study can provide the right pathway for further improvements toward fast-timing applications.

15.
J Mater Chem C Mater ; 10(32): 11598-11606, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36090966

RESUMO

In this work the scintillation properties of PEA2PbBr4 are studied as function of temperature, accessing the potential use of these materials for low temperature applications. The scintillation properties and mechanism have been studied using a combination of temperature dependent photoluminescence emission and excitation, X-ray excited emission and decay measurements. At room temperature the X-ray excited emission is dominated by the 442 nm emission with a lifetime of 35.2 ns. Under UV-Vis photon excitation an additional emission peak is observed at 412 nm. At 10 K, both X-ray and UV-Vis photon excited emission spectra show a narrow emission peak at 412 nm and a broad emission band centred around 525 nm with a lifetime of 1.53 ns (24%) and 154 ns (76%) respectively. The exact nature of the observed emission peaks is not known. For this reason two potential mechanisms explaining the difference between UV-Vis photon and X-ray excitation and their temperature dependent emissions are explored. The total spectral intensity decreases to 72% of the intensity at room temperature at 10 K. It is suggested that the observed negative thermal quenching behaviour results from a combination of more self absorption and a higher degree of self trapped exciton formation under X-ray excitation. Based on the observed fast decay component at 10 K and light yield of 9400 photons per MeV at room temperature, showing only a 28% decrease at 10 K, could make this material potentially interesting for low temperature and fast timing applications.

16.
Heliyon ; 8(6): e09754, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35800729

RESUMO

Despite the clinical acceptance of ToF-PET, there is still a gap between the technology's performance and the end-user's needs. Core to bridging this gap is the ability to develop radiation detectors combining a short attenuation length and a sub-nanosecond time response. Currently, the detector of choice, Lu2SiO5:Ce3+ single crystal, is not selected for its ability to answer the performance needs, but as a trade-off between requirements and availability. To bypass the current performance limitations, in particular restricted time response, the concept of the heterostructured detector has been proposed. The concept aims at splitting the scintillation mechanisms across two materials, one acting primarily as an absorber and one as an ultra-fast emitter. If the concept has attracted the interest of the medical and material communities, little has been shown in terms of the benefits/limitations of the approach. Based on Monte Carlo simulations, we present a survey of heterostructure performance versus detector design. The data allow for a clear understanding of the design/performance relationship. This, in turn, enables the establishment of design rules toward the development and optimization of heterostructured detectors that could supersede the current detector technology in the medical imaging field but also across multiple sectors (e.g. high-energy physics, security).

17.
Polymers (Basel) ; 14(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35267884

RESUMO

Hybrid organic-inorganic perovskite (HOIP) photovoltaics have emerged as a promising new technology for the next generation of photovoltaics since their first development 10 years ago, and show a high-power conversion efficiency (PCE) of about 29.3%. The power-conversion efficiency of these perovskite photovoltaics depends on the base materials used in their development, and methylammonium lead iodide is generally used as the main component. Perovskite materials have been further explored to increase their efficiency, as they are cheaper and easier to fabricate than silicon photovoltaics, which will lead to better commercialization. Even with these advantages, perovskite photovoltaics have a few drawbacks, such as their stability when in contact with heat and humidity, which pales in comparison to the 25-year stability of silicon, even with improvements are made when exploring new materials. To expand the benefits and address the drawbacks of perovskite photovoltaics, perovskite-silicon tandem photovoltaics have been suggested as a solution in the commercialization of perovskite photovoltaics. This tandem photovoltaic results in an increased PCE value by presenting a better total absorption wavelength for both perovskite and silicon photovoltaics. In this work, we summarized the advances in HOIP photovoltaics in the contact of new material developments, enhanced device fabrication, and innovative approaches to the commercialization of large-scale devices.

18.
Environ Sci Pollut Res Int ; 28(46): 65171-65187, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34231144

RESUMO

In this work, waste cooking palm oil (WCPO)-based carbon nanotubes (CNTs) with encapsulated iron (Fe) nanoparticles have been successfully produced via modified thermal chemical vapor deposition method. Based on several characterizations, the dense WCPO-based CNT was produced with high purity of 89% and high crystallinity proven by low ID/IG ratio (0.43). Moreover, the ferromagnetic response of CNTs showed that the average coercivity and magnetization saturation were found to be 551.5 Oe and 13.4 emu/g, respectively. These produced WCPO-based CNTs were further used as heavy metal ions adsorbent for wastewater treatment application. Some optimizations, such as the effect of different adsorbent dosage, varied initial pH solution, and various heavy metal ions, were investigated. The adsorption studies showed that the optimum adsorbent dosage was 1.8 g/L when it was applied to 100 mg/L Cu (II) solution at neutral pH (pH 7). Further measurement then showed that high Cu (II) ion removal percentage (~80%) was achieved when it was applied at very acidic solution (pH 2). Last measurement confirmed that the produced WCPO-based CNTs successfully removed different heavy metal ions in the following order: Fe (II) > Zn (II) ≈ Cu (II) with the removal percentage in the range of 99.2 to 99.9%. The adsorption isotherm for Cu (II) was better fitted by Langmuir model with a correlation coefficient of 0.82751. WCPO-based CNTs can be a potential material to be applied as adsorbent in heavy metal ion removal.


Assuntos
Metais Pesados , Nanotubos de Carbono , Poluentes Químicos da Água , Adsorção , Culinária , Concentração de Íons de Hidrogênio , Íons , Cinética , Óleo de Palmeira , Águas Residuárias , Poluentes Químicos da Água/análise
19.
ACS Appl Mater Interfaces ; 13(49): 59450-59459, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34855346

RESUMO

CsPbBr3 quantum dots (QDs) have recently gained much interest due to their excellent optical and scintillation properties and their potential for X-ray imaging applications. In this study, we blended CsPbBr3 QDs with resin at different QD concentrations to achieve thick films and to protect the CsPbBr3 QDs from environmental moisture. Then, their scintillation properties are investigated and compared to the traditional commercial scintillators, CsI:Tl microcolumns, and Gadox layers. The CsPbBr3 QD-resin sheets show a high light yield of up to 21 500 photons/MeV at room temperature and a relatively small variation in light yield across a wide temperature range. In addition, the CsPbBr3 QD-resin sheets feature a small scintillation afterglow. The CsPbBr3 QD-resin sheets show a negligible trap density for the concentration below 50% weight, indicating that traps might arise from the aggregation of the QDs. The CsPbBr3 QD-resin sheets are also very stable at low irradiation intensities and relatively stable at higher intensities, with higher CsPbBr3 QD concentrations being more stable. Gamma-ray-excited-time-resolved emission measurements at 662 keV showed that the CsPbBr3 QD-resin sheets have an average scintillation decay time between 108 and 176 ns, which are still 10 000 and 6000 times faster than CsI:Tl and Gadox, respectively. Imaging tests show that the CsPbBr3 QD-resin sheets have a mean transfer function of 50% at 2 lp/mm and 20% at 4 lp/mm, comparable to that of commercial Gadox layers. This feature makes CsPbBr3 QD-resin sheets a good candidate for the low-cost, flexible X-ray imaging screens and γ-ray applications.

20.
RSC Adv ; 11(34): 20635-20640, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35479341

RESUMO

We report the optical and scintillation properties of (C6H5CH2NH3)2SnBr4 with excellent absorption length at 20 keV of 0.016 cm, measured bandgap of 2.51 eV, and photoluminescence lifetime of 1.05 µs. The light yield obtained with the 241Am source is 3600 ± 600 photons per MeV, which is much smaller than the maximum attainable light yield obtained from the bandgap. Temperature dependent radioluminescence measurements confirm the presence of thermal quenching at room temperature with the activation energy and the ratio between the attempt and the radiative transition rates of 61 meV and 129, respectively. Although thermal quenching affects light yield at room temperature, this green light-emitting perovskite opens an avenue for new lead-free scintillating materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA