Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445599

RESUMO

In this study, a novel approach was developed to quantify endocannabinoids (eCBs), and was based on the liquid biosensor BIONOTE. This device is composed of a probe that can be immersed in a solution, and an electronic interface that can record a current related to the oxy-reductive reactions occurring in the sample. The two most representative members of eCBs have been analysed in vitro by BIONOTE: anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG). Bovine serum albumin was used to functionalize the probe and improve the sensibility of the whole analytical system. We show that BIONOTE is able to detect both AEA and 2-AG at concentrations in the low nanomolar range, and to discriminate between these eCBs and their moieties arachidonic acid, ethanolamine and glycerol. Notably, BIONOTE distinguished these five different molecules, and it was also able to quantify AEA in human plasma. Although this is just a proof-of-concept study, we suggest BIONOTE as a cheap and user-friendly prototype sensor for high throughput quantitation of eCB content in biological matrices, with an apparent diagnostic potential for tomorrow's medicine.


Assuntos
Técnicas Biossensoriais/métodos , Endocanabinoides/análise , Ácidos Araquidônicos/análise , Ácidos Araquidônicos/sangue , Técnicas Biossensoriais/instrumentação , Endocanabinoides/sangue , Glicerídeos/análise , Glicerídeos/sangue , Humanos , Alcamidas Poli-Insaturadas/análise , Alcamidas Poli-Insaturadas/sangue
2.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299330

RESUMO

The ability of endocannabinoid (eCB) to change functional microglial phenotype can be explored as a possible target for therapeutic intervention. Since the inhibition of fatty acid amide hydrolase (FAAH), the main catabolic enzyme of anandamide (AEA), may provide beneficial effects in mice model of Alzheimer's disease (AD)-like pathology, we aimed at determining whether the FAAH inhibitor URB597 might target microglia polarization and alter the cytoskeleton reorganization induced by the amyloid-ß peptide (Aß). The morphological evaluation showed that Aß treatment increased the surface area of BV-2 cells, which acquired a flat and polygonal morphology. URB597 treatment partially rescued the control phenotype of BV-2 cells when co-incubated with Aß. Moreover, URB597 reduced both the increase of Rho protein activation in Aß-treated BV-2 cells and the Aß-induced migration of BV-2 cells, while an increase of Cdc42 protein activation was observed in all samples. URB597 also increased the number of BV-2 cells involved in phagocytosis. URB597 treatment induced the polarization of microglial cells towards an anti-inflammatory phenotype, as demonstrated by the decreased expression of iNOS and pro-inflammatory cytokines along with the parallel increase of Arg-1 and anti-inflammatory cytokines. Taken together, these data suggest that FAAH inhibition promotes cytoskeleton reorganization, regulates phagocytosis and cell migration processes, thus driving microglial polarization towards an anti-inflammatory phenotype.


Assuntos
Amidoidrolases/antagonistas & inibidores , Benzamidas/farmacologia , Carbamatos/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amidoidrolases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Citocinas/metabolismo , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Camundongos , Microglia/patologia , Alcamidas Poli-Insaturadas/metabolismo
3.
Int J Eat Disord ; 52(11): 1251-1262, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31456239

RESUMO

OBJECTIVE: Despite the growing knowledge on the functional relationship between an altered endocannabinoid (eCB) system and development of anorexia nervosa (AN), to date no studies have investigated the central eCB tone in the activity-based anorexia (ABA) model that reproduces key aspects of human AN. METHOD: We measured levels of two major eCBs, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), those of two eCB-related lipids, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and the cannabinoid type-1 receptor (CB1R) density in the brain of female ABA rats, focusing on areas involved in homeostatic and rewarding-related regulation of feeding behavior (i.e., prefrontal cortex, nucleus accumbens, caudato putamen, amygdala, hippocampus and hypothalamus). Analysis was carried out also at the end of recovery from the ABA condition. RESULTS: At the end of the ABA induction phase, 2-AG was significantly decreased in ABA rats in different brain areas but not in the caudato putamen. No changes were detected in AEA levels in any region, whereas the levels of OEA and PEA were decreased exclusively in the hippocampus and hypothalamus. Furthermore, CB1R density was decreased in the dentate gyrus of hippocampus and in the lateral hypothalamus. After recovery, both 2-AG levels and CB1R density were partially normalized in some areas. In contrast, AEA levels became markedly reduced in all the analyzed areas. DISCUSSION: These data demonstrate an altered brain eCB tone in ABA rats, further supporting the involvement of an impaired eCB system in AN pathophysiology that may contribute to the maintenance of some symptomatic aspects of the disease.


Assuntos
Anorexia Nervosa/induzido quimicamente , Encéfalo/efeitos dos fármacos , Endocanabinoides/efeitos adversos , Animais , Feminino , Humanos , Ratos , Ratos Sprague-Dawley
4.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514437

RESUMO

There is robust evidence indicating that enhancing the endocannabinoid (eCB) tone has therapeutic potential in several brain disorders. The inhibition of eCBs degradation by fatty acid amide hydrolase (FAAH) blockade, is the best-known option to increase N-acyl-ethanolamines-(NAEs)-mediated signaling. Here, we investigated the hypothesis that intranasal delivery is an effective route for different FAAH inhibitors, such as URB597 and PF-04457845. URB597 and PF-04457845 were subchronically administered in C57BL/6 male mice every other day for 20 days for overall 10 drug treatment, and compared for their ability to inhibit FAAH activity by the way of three different routes of administration: intranasal (i.n.), intraperitoneal (i.p.) and oral (p.o.). Lastly, we compared the efficacy of the three routes in terms of URB597-induced increase of NAEs levels in liver and in different brain areas. Results: We show that PF-04457845 potently inhibits FAAH regardless the route selected, and that URB597 was less effective in the brain after p.o. administration while reached similar effects by i.n. and i.p. routes. Intranasal URB597 delivery always increased NAEs levels in brain areas, whereas a parallel increase was not observed in the liver. By showing the efficacy of intranasal FAAH inhibition, we provide evidence that nose-to-brain delivery is a suitable alternative to enhance brain eCB tone for the treatment of neurodegenerative disorders and improve patients' compliance.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Amidoidrolases/metabolismo , Animais , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Carbamatos/administração & dosagem , Carbamatos/farmacologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Endocanabinoides/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Piridazinas/administração & dosagem , Piridazinas/farmacologia , Ureia/administração & dosagem , Ureia/análogos & derivados , Ureia/farmacologia
5.
J Lipid Res ; 58(2): 301-316, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27903595

RESUMO

Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition.


Assuntos
Encéfalo/metabolismo , Cognição/fisiologia , Emoções/fisiologia , Endocanabinoides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cognição/efeitos dos fármacos , Dieta , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/metabolismo , Emoções/efeitos dos fármacos , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/administração & dosagem , Ácidos Graxos Ômega-6/metabolismo , Humanos , Ácido Linoleico/administração & dosagem , Ácido Linoleico/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Ratos , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/metabolismo
6.
Pharmacol Res ; 111: 721-730, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27450295

RESUMO

Based on its wide expression in immune cells, type-2 cannabinoid (CB2) receptors were traditionally thought to act as "peripheral receptors" with an almost exclusively immunomodulatory function. However, their recent identification in mammalian brain areas, as well as in distinct neuronal cells, has opened the way to a re-consideration of CB2 signaling in the context of brain pathophysiology, synaptic plasticity and neuroprotection. To date, accumulated evidence from several independent preclinical studies has offered new perspectives on the possible involvement of CB2 signaling in brain and spinal cord traumatic injury, as well as in the most relevant neurodegenerative disorders like Alzheimer's disease, Parkinson's disease and Huntington's chorea. Here, we will review available information on CB2 in these disease conditions, along with data that support also its therapeutic potential to treat them.


Assuntos
Encéfalo/metabolismo , Degeneração Neural , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Medula Espinal/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Endocanabinoides/metabolismo , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Receptor CB2 de Canabinoide/agonistas , Transdução de Sinais , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/fisiopatologia
7.
Pharmacol Res ; 113(Pt A): 313-319, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27616551

RESUMO

Monocytes are believed to be involved in the immunopathogenesis of multiple sclerosis (MS). The aim of this study was to investigate their role in MS and their immunomodulation by the endocannabinoid system (ECS), a novel target for the treatment of this disease. We compared the level of cytokine production from monocytes in healthy subjects and MS patients upon stimulation with viral or bacterial Toll-like receptors (TLR) and we evaluated the ECS immunomodulatory role in these cells. Here we show that MS monocytes produced more TNF-α, IL-12 and IL-6 following activation of TLR2/4 with LPS or of TLR5 with flagellin, as opposed to TLR7/8 stimulation with R848. Furthermore AEA, the main endocannabinoid, suppressed cytokine production and release from healthy monocytes upon stimulation with both bacterial and viral TLR receptors but not in cells from MS patients, where its immunosuppressive activity was TLR7/8-dependent. Altered expression levels of key ECS members in MS monocytes paralleled these data. Our data disclose a distinct immunomodulatory effect of AEA and an alteration of AEA-related members of the ECS in monocytes from MS patients that involves viral but not bacterial TLR. These findings not only may help to better understand the role of monocytes in MS immunopathogenesis but also could be of help to exploit new endocannabinoid-based drugs that target innate immune cells.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Endocanabinoides/uso terapêutico , Lipídeos/uso terapêutico , Monócitos/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Alcamidas Poli-Insaturadas/uso terapêutico , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Adulto , Endocanabinoides/metabolismo , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Imunossupressores/uso terapêutico , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Masculino , Monócitos/metabolismo , Esclerose Múltipla/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
8.
Methods Mol Biol ; 2576: 275-283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152195

RESUMO

The endocannabinoid 2-arachidonoylglycerol (2-AG) exerts its physiological action by binding to and functionally activating type-1 (CB1) and type-2 (CB2) cannabinoid receptors. It is thought to be produced through the action of sn-1 selective diacylglycerol lipase (DAGL) that catalyzes 2-AG biosynthesis from sn-2-arachidonate-containing diacylglycerols. Different methodological approaches for measuring DAGL activity in biological samples are now available. Here, a highly sensitive radiometric assay to assess DAGL activity, by using 1-oleoyl[1-14C]-2-arachidonoylglycerol as the substrate, is reported. All the steps required to perform lipid extraction, fractionation by thin-layer chromatography (TLC), and quantification of radiolabeled [14C]-oleic acid via scintillation counting are described in detail.


Assuntos
Endocanabinoides , Lipase Lipoproteica , Diglicerídeos/metabolismo , Endocanabinoides/metabolismo , Lipase Lipoproteica/metabolismo , Ácido Oleico , Receptores de Canabinoides
9.
Bioorg Med Chem ; 20(1): 101-7, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22172309

RESUMO

Dipyrone is a common antipyretic drug and the most popular non-opioid analgesic in many countries. In spite of its long and widespread use, molecular details of its fate in the body are not fully known. We administered dipyrone orally to mice. Two unknown metabolites were found, viz. the arachidonoyl amides of the known major dipyrone metabolites, 4-methylaminoantipyrine (2) and 4-aminoantipyrine (3). They were identified by ESI-LC-MS/MS after extraction from the CNS, and comparison with reference substances prepared synthetically. The arachidonoyl amides were positively tested for cannabis receptor binding (CB(1) and CB(2)) and cyclooxygenase inhibition (COX-1 and COX-2 in tissues and as isolated enzymes), suggesting that the endogenous cannabinoid system may play a role in the effects of dipyrone against pain.


Assuntos
Dipirona/metabolismo , Administração Oral , Aminopiridinas/química , Ampirona/química , Animais , Sistema Nervoso Central/química , Cromatografia Líquida de Alta Pressão/normas , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Dipirona/farmacologia , Ativação Enzimática/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Padrões de Referência , Espectrometria de Massas por Ionização por Electrospray/normas
10.
Proc Natl Acad Sci U S A ; 106(27): 11131-6, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19541620

RESUMO

The exact role of the endocannabinoid system (ECS) during spermatogenesis has not been clarified. We used purified germ cell fractions representative of all phases of spermatogenesis and primary cultures of spermatogonia. This approach allowed the precise quantification of the cannabinoid receptor ligands, anandamide and 2-arachidonoylglycerol, and of the expression at transcriptional and transductional levels of their metabolic enzymes and receptors. Our data indicate that male mouse germ cells possess an active and complete ECS, which is modulated during meiosis, and suggest the presence of an autocrine endocannabinoid signal during spermatogenesis. Mitotic cells possess higher levels of 2-arachidonoylglycerol, which decrease in spermatocytes and spermatids. Accordingly, spermatogonia express higher and lower levels of 2-arachidonoylglycerol biosynthetic and degrading enzymes, respectively, as compared to meiotic and postmeiotic cells. This endocannabinoid likely plays a pivotal role in promoting the meiotic progression of germ cells by activating CB(2) receptors. In fact, we found that the selective CB(2) receptor agonist, JWH133, induced the Erk 1/2 MAPK phosphorylation cascade in spermatogonia and their progression toward meiosis, because it increased the number of cells positive for SCP3, a marker of meiotic prophase, and the expression of early meiotic prophase genes.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Receptor CB2 de Canabinoide/metabolismo , Espermatogênese , Animais , Ácidos Araquidônicos/biossíntese , Moduladores de Receptores de Canabinoides/biossíntese , Canabinoides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Imunofluorescência , Glicerídeos/biossíntese , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Prófase Meiótica I/efeitos dos fármacos , Camundongos , Alcamidas Poli-Insaturadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Espermatogênese/efeitos dos fármacos , Espermatogônias/citologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
11.
J Neurosci ; 30(7): 2710-5, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20164355

RESUMO

Endocannabinoids control hippocampal inhibitory synaptic transmission through activation of presynaptic CB(1) receptors. During depolarization-induced suppression of inhibition (DSI), endocannabinoids are synthesized upon postsynaptic depolarization. The endocannabinoid 2-arachidonoylglycerol (2-AG) may mediate hippocampal DSI. Currently, the best studied pathway for biosynthesis of 2-AG involves the enzyme diacylglycerol lipase (DAGL). However, whether DAGL is necessary for hippocampal DSI is controversial and was not systematically addressed. Here, we investigate DSI at unitary connections between CB(1) receptor-containing interneurons and pyramidal neurons in CA1. We found that the novel DAGL inhibitor OMDM-188, as well as the established inhibitor RHC-80267, did not affect DSI. As reported previously, effects of the DAGL inhibitor tetrahydrolipstatin depended on the application method: postsynaptic intracellular application left DSI intact, while incubation blocked DSI. We show that all DAGL inhibitors tested block slow self-inhibition in neocortical interneurons, which involves DAGL. We conclude that DAGL is not involved in DSI at unitary connections in hippocampus.


Assuntos
Potenciais Pós-Sinápticos Inibidores/fisiologia , Lipase Lipoproteica/metabolismo , Inibição Neural/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Benzoxazinas/farmacologia , Cicloexanonas/farmacologia , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Lipase Lipoproteica/antagonistas & inibidores , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Naftalenos/farmacologia , Neocórtex/citologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Neurônios/efeitos dos fármacos , Piridazinas/farmacologia , Quinoxalinas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/deficiência , Valina/análogos & derivados , Valina/farmacologia
12.
Life (Basel) ; 11(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575083

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that progresses from mild cognitive impairment to severe dementia over time. The main clinical hallmarks of the disease (e.g., beta-amyloid plaques and neurofibrillary tangles) begin during preclinical AD when cognitive deficits are not yet apparent. Hence, a more profound understanding of AD pathogenesis is needed to develop new therapeutic strategies. In this context, the endocannabinoid (eCB) system and the gut microbiome are increasingly emerging as important players in maintaining the general homeostasis and the health status of the host. However, their interaction has come to light just recently with gut microbiota regulating the eCB tone at both receptor and enzyme levels in intestinal and adipose tissues. Importantly, eCB system and gut microbiome, have been suggested to play a role in AD in both animal and human studies. Therefore, the microbiome gut-brain axis and the eCB system are potential common denominators in the AD physiopathology. Hence, the aim of this review is to provide a general overview on the role of both the eCB system and the microbiome gut-brain axis in AD and to suggest possible mechanisms that underlie the potential interplay of these two systems.

13.
Front Vet Sci ; 8: 655311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124221

RESUMO

Chronic enteropathies (CEs) in dogs, according to the treatment response to consecutive trials, are classified as food-responsive (FRE), antibiotic-responsive (ARE), and immunosuppressive-responsive (IRE) enteropathy. In addition to this classification, dogs with loss of protein across the gut are grouped as protein-losing enteropathy (PLE). At present, the diagnosis of CEs is time-consuming, costly and sometimes invasive, also because non-invasive biomarkers with high sensitivity and specificity are not yet available. Therefore, this study aimed at assessing the levels of circulating endocannabinoids in plasma as potential diagnostic markers of canine CEs. Thirty-three dogs with primary chronic gastrointestinal signs presented to Veterinary Teaching Hospitals of Teramo and Bologna (Italy) were prospectively enrolled in the study, and 30 healthy dogs were included as a control group. Plasma levels of N-arachidonoylethanolamine (AEA), 2-arachidonoylglycerol (2-AG), N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA) were measured at the time of the first visit in dogs with different CEs, as well as in healthy subjects. Plasma levels of 2-AG (p = 0.001) and PEA (p = 0.008) were increased in canine CEs compared to healthy dogs. In particular, PEA levels were increased in the FRE group compared to healthy dogs (p = 0.04), while 2-AG was higher in IRE than in healthy dogs (p = 0.0001). Dogs affected by FRE also showed decreased 2-AG (p = 0.0001) and increased OEA levels (p = 0.0018) compared to IRE dogs. Moreover, dogs with PLE showed increased 2-AG (p = 0.033) and decreased AEA (p = 0.035), OEA (p = 0.016) and PEA (p = 0.023) levels, when compared to dogs affected by CEs without loss of proteins. The areas under ROC curves for circulating 2-AG (0.91; 95% confidence interval [CI], 0.79-1.03) and OEA (0.81; 95% CI, 0.65-0.97) showed a good accuracy in distinguishing the different forms of CEs under study (FRE, ARE and IRE), at the time of the first visit. The present study demonstrated that endocannabinoid signaling is altered in canine CEs, and that CE subtypes showed distinct profiles of 2-AG, PEA and OEA plasma levels, suggesting that these circulating bioactive lipids might have the potential to become candidate biomarkers for canine CEs.

14.
Biochim Biophys Acta ; 1791(1): 53-60, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19027877

RESUMO

Although inhibitors of the enzymatic hydrolysis of the endocannabinoid 2-arachidonoylglycerol are available, they are either rather weak in vitro (IC(50)>30 microM) or their selectivity towards other proteins of the endocannabinoid system has not been tested. Here we describe the synthesis and activity in vitro and in vivo of a tetrahydrolipstatin analogue, OMDM169, as a potent inhibitor of 2-AG hydrolysis, capable of enhancing 2-AG levels and of exerting analgesic activity via indirect activation of cannabinoid receptors. OMDM169 exhibited 0.13 microM10 microM) at human CB(1) and CB(2) receptors. However, OMDM169 shared with tetrahydrolipstatin the capability of inhibiting the human pancreatic lipase (IC(50)=0.6 microM). OMDM169 inhibited fatty acid amide hydrolase and diacylglycerol lipase only at higher concentrations (IC(50)=3.0 and 2.8 microM, respectively), and, accordingly, it increased by approximately 1.6-fold the levels of 2-AG, but not anandamide, in intact ionomycin-stimulated N18TG2 neuroblastoma cells. Acute intraperitoneal (i.p.) administration of OMDM169 to mice inhibited the second phase of the formalin-induced nocifensive response with an IC(50) of approximately 2.5 mg/kg, and concomitantly elevated 2-AG, but not anandamide, levels in the ipsilateral paw of formalin-treated mice. The antinociceptive effect of OMDM169 was antagonized by antagonists of CB(1) and CB(2) receptors, AM251 and AM630, respectively (1 mg/kg, i.p.). OMDM69 might represent a template for the development of selective and even more potent inhibitors of 2-AG hydrolysis.


Assuntos
Analgésicos/síntese química , Analgésicos/farmacologia , Ácidos Araquidônicos/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Formamidas/síntese química , Formamidas/farmacologia , Glicerídeos/antagonistas & inibidores , Propiolactona/análogos & derivados , Animais , Ácidos Araquidônicos/metabolismo , Células COS , Chlorocebus aethiops , Endocanabinoides , Glicerídeos/metabolismo , Humanos , Hidrólise/efeitos dos fármacos , Concentração Inibidora 50 , Lipase Lipoproteica/metabolismo , Camundongos , Monoacilglicerol Lipases/metabolismo , Propiolactona/síntese química , Propiolactona/farmacologia , Ratos
15.
Biol Reprod ; 82(2): 451-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19812302

RESUMO

During transit through the epididymis, spermatozoa are normally kept immotile and do not attain the ability to become motile until they reach the caudal epididymis. This study was undertaken to determine whether endocannabinoids play a role in the epididymis and in particular in suppressing the ability of spermatozoa to become motile. We show that the levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are high in mouse spermatozoa isolated from the caput (head) of the epididymis, where these cells do not move (or possess sluggish and irregular motility) and decrease dramatically in spermatozoa isolated from the cauda (tail). The subsequent gradient regulates, via autocrine communication, the activity of cannabinoid receptor CNR1 (previously known as CB1) present on the sperm cell membrane and induces caudal spermatozoa to acquire the potential to become motile ("start-up"). Accordingly, the genetic or pharmacological inactivation of CNR1 increases number of motile spermatozoa in caput. Also, blockers of endocannabinoid cellular uptake inhibit the potential to move of spermatozoa and destroy the 2-AG gradient throughout the epididymis. This gradient-regulated mechanism may encourage further research for future therapies related to male infertility.


Assuntos
Ácidos Araquidônicos/análise , Epididimo/química , Epididimo/citologia , Glicerídeos/análise , Receptor CB1 de Canabinoide/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Animais , Ácidos Araquidônicos/fisiologia , Moduladores de Receptores de Canabinoides/análise , Moduladores de Receptores de Canabinoides/antagonistas & inibidores , Endocanabinoides , Glicerídeos/fisiologia , Masculino , Camundongos , Camundongos Knockout , Receptor CB1 de Canabinoide/deficiência , Canais de Cátion TRPV/fisiologia
16.
Bioorg Med Chem Lett ; 20(3): 1210-3, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20022504

RESUMO

N-Acylethanolamines, including N-palmitoyl-ethanolamine (PEA), are hydrolyzed to the corresponding fatty acids and ethanolamine by fatty acid amide hydrolase (FAAH). Recently, N-acylethanolamine-hydrolyzing acid amidase (NAAA) was identified as being able to specifically hydrolyze PEA. In order to find selective and effective inhibitors of this enzyme, we synthesized and screened several amides, retroamides, esters, retroesters and carbamates of palmitic acid (1-21) and esters with C15 and C17 alkyl chains (22-27). Cyclopentylhexadecanoate (13) exhibited the highest inhibitory activity on NAAA (IC(50)=10.0 microM), without inhibiting FAAH up to 50 microM. Compound 13 may become a useful template to design new NAAA inhibitors.


Assuntos
Amidoidrolases/antagonistas & inibidores , Ácidos Palmíticos/síntese química , Amidas , Amidoidrolases/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Endocanabinoides , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Etanolaminas , Humanos , Hidrólise , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacologia , Relação Estrutura-Atividade
17.
Biomolecules ; 10(12)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371219

RESUMO

Although the primordial concept of lipids is associated with the role they play as key components of the cell membrane, growing research in the field of bioactive lipids and lipidomic technologies proves the prominent role of these molecules in other biological functions [...].


Assuntos
Biomarcadores/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Transdução de Sinais , Artrite/metabolismo , Doenças Cardiovasculares/metabolismo , Comunicação Celular , Humanos , Microbiota , Doenças Neurodegenerativas/metabolismo , Obesidade/metabolismo , Prognóstico
18.
Nat Rev Neurol ; 16(1): 9-29, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831863

RESUMO

Anecdotal evidence that cannabis preparations have medical benefits together with the discovery of the psychotropic plant cannabinoid Δ9-tetrahydrocannabinol (THC) initiated efforts to develop cannabinoid-based therapeutics. These efforts have been marked by disappointment, especially in relation to the unwanted central effects that result from activation of cannabinoid receptor 1 (CB1), which have limited the therapeutic use of drugs that activate or inactivate this receptor. The discovery of CB2 and of endogenous cannabinoid receptor ligands (endocannabinoids) raised new possibilities for safe targeting of this endocannabinoid system. However, clinical success has been limited, complicated by the discovery of an expanded endocannabinoid system - known as the endocannabinoidome - that includes several mediators that are biochemically related to the endocannabinoids, and their receptors and metabolic enzymes. The approvals of nabiximols, a mixture of THC and the non-psychotropic cannabinoid cannabidiol, for the treatment of spasticity and neuropathic pain in multiple sclerosis, and of purified botanical cannabidiol for the treatment of otherwise untreatable forms of paediatric epilepsy, have brought the therapeutic use of cannabinoids and endocannabinoids in neurological diseases into the limelight. In this Review, we provide an overview of the endocannabinoid system and the endocannabinoidome before discussing their involvement in and clinical relevance to a variety of neurological disorders, including Parkinson disease, Alzheimer disease, Huntington disease, multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, stroke, epilepsy and glioblastoma.


Assuntos
Canabinoides/metabolismo , Endocanabinoides/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Analgésicos/metabolismo , Analgésicos/uso terapêutico , Animais , Canabidiol/metabolismo , Canabidiol/uso terapêutico , Canabinoides/uso terapêutico , Dronabinol/metabolismo , Dronabinol/uso terapêutico , Combinação de Medicamentos , Endocanabinoides/uso terapêutico , Humanos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
19.
J Bone Miner Res ; 35(12): 2415-2422, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32777114

RESUMO

Increased circulating sclerostin and accumulation of advanced glycation end-products (AGEs) are two potential mechanisms underlying low bone turnover and increased fracture risk in type 2 diabetes (T2D). Whether the expression of the sclerostin-encoding SOST gene is altered in T2D, and whether it is associated with AGEs accumulation or regulation of other bone formation-related genes is unknown. We hypothesized that AGEs accumulate and SOST gene expression is upregulated in bones from subjects with T2D, leading to downregulation of bone forming genes (RUNX2 and osteocalcin) and impaired bone microarchitecture and strength. We obtained bone tissue from femoral heads of 19 T2D postmenopausal women (mean glycated hemoglobin [HbA1c] 6.5%) and 73 age- and BMI-comparable nondiabetic women undergoing hip replacement surgery. Despite similar bone mineral density (BMD) and biomechanical properties, we found a significantly higher SOST (p = .006) and a parallel lower RUNX2 (p = .025) expression in T2D compared with non-diabetic subjects. Osteocalcin gene expression did not differ between T2D and non-diabetic subjects, as well as circulating osteocalcin and sclerostin levels. We found a 1.5-fold increase in total bone AGEs content in T2D compared with non-diabetic women (364.8 ± 78.2 versus 209.9 ± 34.4 µg quinine/g collagen, respectively; p < .001). AGEs bone content correlated with worse bone microarchitecture, including lower volumetric BMD (r = -0.633; p = .02), BV/TV (r = -0.59; p = .033) and increased trabecular separation/spacing (r = 0.624; p = .023). In conclusion, our data show that even in patients with good glycemic control, T2D affects the expression of genes controlling bone formation (SOST and RUNX2). We also found that accumulation of AGEs is associated with impaired bone microarchitecture. We provide novel insights that may help understand the mechanisms underlying bone fragility in T2D. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Idoso , Densidade Óssea , Osso e Ossos , Feminino , Hemoglobinas Glicadas , Humanos
20.
J Neurosci ; 28(50): 13532-41, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19074027

RESUMO

In the CNS, endocannabinoids are identified mainly as two endogenous lipids: anandamide, the ethanolamide of arachidonic acid, and 2-arachidonoylglycerol (2-AG). Endocannabinoids are known to inhibit transmitter release from presynaptic terminals; however we have recently demonstrated that they are also involved in slow self-inhibition (SSI) of layer V low-threshold spiking (LTS) interneurons in rat somatosensory cortex. SSI is induced by repetitive firing in LTS cells, which can express either cholecystokinin or somatostatin. SSI is triggered by an endocannabinoid-dependent activation of a prolonged somatodendritic K(+) conductance and associated hyperpolarization in the same cell. The synthesis of both endocannabinoids is dependent on elevated [Ca(2+)](i) such as occurs during sustained neuronal activity. To establish whether 2-AG mediates autocrine LTS-SSI, we blocked its biosynthesis from phospholipase C (PLC) and diacylglycerol lipases (DAGLs). Current-clamp recordings from LTS interneurons in acute neocortical slices showed that inclusion of DAGL inhibitors in the whole-cell pipette prevented the long-lasting hyperpolarization triggered by LTS cell repetitive firing. Similarly, extracellular applications of a PLC inhibitor prevented SSI in LTS interneurons. Moreover, metabotropic glutamate receptor-dependent activation of PLC produced a long-lasting hyperpolarization which was prevented by the CB1 antagonist AM251, as well as by PLC and DAGL inhibitors. The loss of SSI in the presence of intracellular DAGL blockers confirms that endocannabinoid production occurs in the same interneuron undergoing the persistent hyperpolarization. Since DAGLs produce no endocannabinoid other than 2-AG, these results identify this compound as the autocrine mediator responsible for the postsynaptic slow self-inhibition of neocortical LTS interneurons.


Assuntos
Ácidos Araquidônicos/metabolismo , Glicerídeos/metabolismo , Interneurônios/metabolismo , Neocórtex/metabolismo , Inibição Neural/fisiologia , Animais , Endocanabinoides , Inibidores Enzimáticos/farmacologia , Imuno-Histoquímica , Interneurônios/efeitos dos fármacos , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/efeitos dos fármacos , Neocórtex/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA