Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445390

RESUMO

Nuclear factor of activated T cells (NFAT) family of transcription factors are substrates of calcineurin and play an important role in integrating Ca2+ signaling with a variety of cellular functions. Of the five NFAT proteins (NFAT1-5), NFAT1-4 are subject to dephosphorylation and activation by calcineurin, a Ca2+-calmodulin-dependent phosphatase. Increased levels of intracellular Ca2+ activates calcineurin, which in turn dephosphorylates and promotes nuclear translocation of NFAT. We investigated the functions of NFAT proteins in the retinal pigment epithelial cells (RPE). Our results show that NFAT-mediated luciferase activity was induced upon treatment with the bacterial endotoxin, lipopolysaccharide (LPS) and treatment with the NFAT peptide inhibitor, MAGPHPVIVITGPHEE (VIVIT) decreased LPS-induced NFAT luciferase activity. LPS-induced activation of NFAT-regulated cytokines (IL-6 and IL-8) is inhibited by treatment of cells with VIVIT. We also investigated the effects of NFAT signaling on the autophagy pathway. Our results show that inhibition of NFAT with VIVIT in cells deprived of nutrients resulted in cytosolic retention of transcription Factor EB (TFEB), decreased expression of TFEB-regulated coordinated Lysosomal Expression and Regulation CLEAR network genes and decreased starvation-induced autophagy flux in the RPE cells. In summary, these studies suggest that the NFAT pathway plays an important role in the regulation of autophagy and inflammation in the RPE.


Assuntos
Lipopolissacarídeos/efeitos adversos , Fatores de Transcrição NFATC/metabolismo , Oligopeptídeos/efeitos adversos , Epitélio Pigmentado da Retina/citologia , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/genética , Interleucina-8/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064901

RESUMO

To characterize the mechanisms by which the highly conserved exocyst trafficking complex regulates eye physiology in zebrafish and mice, we focused on Exoc5 (also known as sec10), a central exocyst component. We analyzed both exoc5 zebrafish mutants and retinal pigmented epithelium (RPE)-specific Exoc5 knockout mice. Exoc5 is present in both the non-pigmented epithelium of the ciliary body and in the RPE. In this study, we set out to establish an animal model to study the mechanisms underlying the ocular phenotype and to establish if loss of visual function is induced by postnatal RPE Exoc5-deficiency. Exoc5-/- zebrafish had smaller eyes, with decreased number of melanocytes in the RPE and shorter photoreceptor outer segments. At 3.5 days post-fertilization, loss of rod and cone opsins were observed in zebrafish exoc5 mutants. Mice with postnatal RPE-specific loss of Exoc5 showed retinal thinning associated with compromised visual function and loss of visual photoreceptor pigments. Abnormal levels of RPE65 together with a reduced c-wave amplitude indicate a dysfunctional RPE. The retinal phenotype in Exoc5-/- mice was present at 20 weeks, but was more pronounced at 27 weeks, indicating progressive disease phenotype. We previously showed that the exocyst is necessary for photoreceptor ciliogenesis and retinal development. Here, we report that exoc5 mutant zebrafish and mice with RPE-specific genetic ablation of Exoc5 develop abnormal RPE pigmentation, resulting in retinal cell dystrophy and loss of visual pigments associated with compromised vision. Together, these data suggest that exocyst-mediated signaling in the RPE is required for RPE structure and function, indirectly leading to photoreceptor degeneration.


Assuntos
Células Fotorreceptoras/patologia , Degeneração Retiniana , Epitélio Pigmentado da Retina/patologia , Proteínas de Transporte Vesicular/fisiologia , Transtornos da Visão/patologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Fotorreceptoras/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transtornos da Visão/metabolismo , Peixe-Zebra
3.
J Neuroinflammation ; 16(1): 115, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151410

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a major cause of death and disability in the USA and the world; it constitutes 30% of injury-related deaths (Taylor et al., MMWR Surveill Summ 66:1-16, 2017). Contact sports athletes often experience repetitive TBI (rTBI), which exerts a cumulative effect later in life. Visual impairment is a common after-effect of TBI. Previously, we have shown that C-C chemokine 20 (CCL20) plays a critical role in neurodegeneration and inflammation following TBI (Das et al., J Neuroinflammation 8:148, 2011). C-C chemokine receptor 6 (CCR6) is the only receptor that CCL20 interacts with. The objective of the present study was to investigate the role of CCL20-CCR6 axis in mediating rTBI-induced visual dysfunction (TVD). METHODS: Wild type (WT) or CCR6 knock out (CCR6-/-) mice were subjected to closed head rTBI. Pioglitazone (PG) is a peroxisome proliferator-activated receptor γ (PPARγ) agonist which downregulates CCL20 production. Subsets of WT mice were treated with PG following final rTBI. A subset of mice was also treated with anti-CCL20 antibody to neutralize the CCL20 produced after rTBI. Histopathological assessments were performed to show cerebral pathologies, retinal pathologies, and inflammatory changes induced by rTBI. RESULTS: rTBI induced cerebral neurodegeneration, retinal degeneration, microgliosis, astrogliosis, and CCL20 expression. CCR6-/- mice showed reduced retinal degeneration, microgliosis, and inflammation. Treatment with CCL20 neutralization antibody or PG showed reduced CCL20 expression along with reduced retinal degeneration and inflammation. rTBI-induced GFAP-positive glial activation in the optic nerve was not affected by knocking out CCR6. CONCLUSION: The present data indicate that rTBI-induced retinal pathology is mediated at least in part by CCL20 in a CCR6-dependent manner.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Quimiocina CCL20/metabolismo , Receptores CCR6/metabolismo , Retina/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR6/deficiência , Retina/patologia
4.
Mol Vis ; 22: 294-310, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27110092

RESUMO

PURPOSE: Chronic oxidative stress and subacute inflammation have been implicated as causes of age-related macular degeneration (AMD). In this study, we tested whether an orally available 5-OH-tryptamine (5HT) 1a receptor agonist, xaliproden, could protect against retinal pigment epithelium (RPE) cell damage in culture and in a mouse model of geographic atrophy. METHODS: Paraquat was used to create mitochondrial oxidative stress in ARPE-19 cells, and tumor necrosis factor-α (TNF-α) was used to stimulate the production of inflammatory cytokines in these cells. The production of antioxidant proteins, metallothionein, and inflammatory cytokines was assayed with quantitative real-time PCR. Cell survival was analyzed with microscopy and a cell titer assay. Integrity of the RPE monolayer was determined by measuring the transepithelial electrical resistance (TEER) and with immunocytochemistry with zona occludens protein 1 (ZO-1) antibody. RPE atrophy was studied in mice deleted for Sod2 (the gene for mitochondrial superoxide dismutase) specifically in the RPE. The mice were treated orally with daily doses of xaliproden at 0.5 and 3 mg/kg for 4 months. The retinal structure was analyzed with spectral domain optical coherence tomography (SD-OCT) and with light and electron microscopy. Retinal function was assessed with full-field electroretinography (ERG) and with optokinetic measurements. RESULTS: Xaliproden led to a dose-dependent increase in cell survival following treatment with paraquat. Synthesis of the antioxidant response genes NqO1, GSTM1, CAT, HO-1, and Nrf2 was increased in response to the drug, as was the zinc chaperone metallothionein. Treatment of cells with TNF-α led to increased production of IL-1ß, IL-6, chemokine (C-C motif) ligand 20 (CCL20), and vascular endothelial growth factor (VEGF) by ARPE-19 cells, and this response was attenuated by treatment with xaliproden. TNF-α also led to a decrease in the TEER that was prevented by treatment with the 5HT1a agonist. Daily gavage with xaliproden at either dose induced the production of protective enzymes in the mouse retina, and treatment of the Sod2-deleted mice with the drug showed improved thickness of the outer nuclear layer and improved visual acuity relative to the control-treated mice. There was no significant difference in full-field scotopic ERG among the treatment groups, however. Vacuolization of the RPE and disorganization of the photoreceptor outer segments were reduced at both dose levels of xaliproden. CONCLUSIONS: Xaliproden protected RPE cells from oxidative and inflammatory insults and protected the mouse RPE and retina from RPE atrophy in the face of excess mitochondrial oxidative stress. These results suggest that this drug, which had a reasonable safety profile in clinical trials, may be used to prevent the progression of geographic atrophy in humans.


Assuntos
Atrofia Geográfica/prevenção & controle , Naftalenos/uso terapêutico , Piridinas/uso terapêutico , Epitélio Pigmentado da Retina/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/uso terapêutico , Administração Oral , Animais , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Reposicionamento de Medicamentos , Impedância Elétrica , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Atrofia Geográfica/metabolismo , Atrofia Geográfica/fisiopatologia , Humanos , Metalotioneína/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Naftalenos/administração & dosagem , Piridinas/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real , Retina/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Tomografia de Coerência Óptica , Proteína da Zônula de Oclusão-1/metabolismo
5.
Mol Ther ; 23(5): 875-884, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25698151

RESUMO

Inflammation is a key component of chronic and acute diseases of the eye. Our goal is to test anti-inflammatory genes delivered by an adeno-associated virus (AAV) vector as potential treatments for retinal inflammation. We developed a secretable and cell penetrating form of the caspase activation and recruitment domain (CARD) from the apoptosis-associated speck-like protein containing a CARD (ASC) gene that binds caspase-1 and inhibits its activation by the inflammasome. The secretion and cell penetration characteristics of this construct were validated in vitro by measuring its effects on inflammasome signaling in a monocyte cell line and in an retinal pigmented epithelium (RPE) cell line. This vector was then packaged as AAV particles and tested in the endotoxin-induced uveitis mouse model. Gene expression was monitored one month after vector injection by fluorescence fundoscopy. Ocular inflammation was then induced by injecting lipopolysaccharide into the vitreous and was followed by enucleation 24 hours later. Eyes injected with the secretable and cell penetrating CARD AAV vector had both a significantly lower concentration of IL-1ß as well as a 64% reduction in infiltrating cells detected in histological sections. These results suggest that anti-inflammatory genes such as the CARD could be used to treat recurring inflammatory diseases like uveitis or chronic subacute inflammations of the eye.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Terapia Genética , Inflamação/genética , Domínios e Motivos de Interação entre Proteínas/genética , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/metabolismo , Linhagem Celular , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Endotoxinas/efeitos adversos , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Lentivirus/genética , Camundongos , Reprodutibilidade dos Testes , Retina/metabolismo , Transdução Genética , Transgenes , Uveíte/induzido quimicamente , Uveíte/genética , Uveíte/metabolismo , Uveíte/patologia , Uveíte/terapia
6.
Adv Exp Med Biol ; 854: 59-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427394

RESUMO

Age related macular degeneration (AMD) is the most common cause of blindness among people of 65 years and older in developed countries (Klein and Klein, Invest Ophthalmol Vis Sci 54:7395-7401, 2013). Recent advances in dry AMD research points towards an important role of the inflammatory response in the development of the disease. The presence of inflammatory cells, antibodies, complement factors and pro-inflammatory cytokines in AMD retinas and drusen indicates that the immune system could be an important driving force in dry AMD. The NLRP3 inflammasome has been proposed as an integrator of process associated with AMD and the induction of inflammation. Herein we summarize the most recent studies that attempt to understand the role of the NLRP3 inflammasome in AMD.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Degeneração Macular/metabolismo , Animais , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Retina/metabolismo , Transdução de Sinais
7.
Adv Exp Med Biol ; 854: 31-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427390

RESUMO

An appropriate animal model is essential to screening drugs or designing a treatment strategy for geographic atrophy. Since oxidative stress contributes to the pathological changes of the retinal pigment epithelium (RPE), we are reporting a new mouse AMD model of retinal degeneration by inducing mitochondrial oxidative stress in RPE. Sod2 the gene for manganese superoxide dismutase (MnSOD) was deleted in RPE layer using conditional knockout strategy. Fundus microscopy, SD-OCT and electroretinography were used to monitor retinal structure and function in living animals and microscopy was used to assess pathology post mortem. Tissue specific deletion of Sod2 caused elevated signs of oxidative stress, RPE dysfunction and showed some key features of AMD. Due to induction of oxidative stress, the conditional knockout mice show progressive reduction in ERG responses and thinning of outer nuclear layer (ONL) compared to non-induced littermates.


Assuntos
Modelos Animais de Doenças , Degeneração Macular/genética , Estresse Oxidativo , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina/metabolismo , Superóxido Dismutase/genética , Animais , Bestrofinas , Eletrorretinografia , Proteínas do Olho/genética , Feminino , Humanos , Imuno-Histoquímica , Canais Iônicos/genética , Degeneração Macular/metabolismo , Degeneração Macular/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Oftalmoscópios , Oftalmoscopia/métodos , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/fisiopatologia , Superóxido Dismutase/deficiência , Superóxido Dismutase/metabolismo , Tomografia de Coerência Óptica
8.
Exp Eye Res ; 140: 94-105, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26315784

RESUMO

Chronic oxidative stress contributes to age related diseases including age related macular degeneration (AMD). Earlier work showed that the 5-hydroxy-tryptamine 1a (5HT1a) receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) protects retinal pigment epithelium (RPE) cells from hydrogen peroxide treatment and mouse retinas from oxidative insults including light injury. In our current experiments, RPE derived cells subjected to mitochondrial oxidative stress were protected from cell death by the up-regulation of anti-oxidant enzymes and of the metal ion chaperone metallothionein. Differentiated RPE cells were resistant to oxidative stress, and the expression of genes for protective proteins was highly increased by oxidative stress plus drug treatment. In mice treated with 8-OH-DPAT, the same genes (MT1, HO1, NqO1, Cat, Sod1) were induced in the neural retina, but the drug did not affect the expression of Sod2, the gene for manganese superoxide dismutase. We used a mouse strain deleted for Sod2 in the RPE to accelerate age-related oxidative stress in the retina and to test the impact of 8-OH-DPAT on the photoreceptor and RPE degeneration developed in these mice. Treatment of mice with daily injections of the drug led to increased electroretinogram (ERG) amplitudes in dark-adapted mice and to a slight improvement in visual acuity. Most strikingly, in mice treated with a high dose of the drug (5 mg/kg) the structure of the RPE and Bruch's membrane and the normal architecture of photoreceptor outer segments were preserved. These results suggest that systemic treatment with this class of drugs may be useful in preventing geographic atrophy, the advanced form of dry AMD, which is characterized by RPE degeneration.


Assuntos
8-Hidroxi-2-(di-n-propilamino)tetralina/uso terapêutico , Mitocôndrias/metabolismo , Estresse Oxidativo , Retina/efeitos dos fármacos , Agonistas do Receptor de Serotonina/uso terapêutico , Animais , Linhagem Celular , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Deleção de Genes , Metalotioneína/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor 5-HT1A de Serotonina/metabolismo , Retina/metabolismo , Retina/fisiopatologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Superóxido Dismutase/genética , Tomografia de Coerência Óptica , Acuidade Visual/efeitos dos fármacos
9.
Antioxidants (Basel) ; 12(12)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38136248

RESUMO

Chronic oxidative stress impairs the normal functioning of the retinal pigment epithelium (RPE), leading to atrophy of this cell layer in cases of advance age-related macular degeneration (AMD). The purpose of our study was to determine if buspirone, a partial serotonin 1A (5-HT1A) receptor agonist, protected against oxidative stress-induced changes in the RPE. We exposed differentiated human ARPE-19 cells to paraquat to induce oxidative damage in culture, and utilized a mouse model with sodium iodate (NaIO3)-induced oxidative injury to evaluate the effect of buspirone. To investigate buspirone's effect on protective gene expression, we performed RT-PCR. Cellular toxicities and junctional abnormalities due to paraquat induction in ARPE-19 cells and buspirone's impact were assessed via WST-1 assays and ZO-1 immunostaining. We used spectral-domain optical coherence tomography (SD-OCT) and ZO-1 immunostaining of RPE/choroid for structural analysis. WST-1 assays showed dose-dependent protection of viability in buspirone-treated ARPE-19 cells in culture and preservation of RPE junctional integrity under oxidative stress conditions. In the NaIO3 model, daily intraperitoneal injection (i.p.) of buspirone (30 mg/kg) for 12 days improved the survival of photoreceptors compared to those of vehicle-treated eyes. ZO-1-stained RPE flat-mounts revealed the structural preservation of RPE from oxidative damage in buspirone-treated mice, as well as in buspirone-induced Nqo1, Cat, Sqstm1, Gstm1, and Sod2 genes in the RPE/choroid compared to untreated eyes. Since oxidative stress is implicated in the pathogenesis AMD, repurposing buspirone, which is currently approved for the treatment of anxiety, might be useful in treating or preventing dry AMD.

10.
Nutrients ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745101

RESUMO

The systemic transport of dietary vitamin A/all-trans retinol bound to RBP4 into peripheral tissues for storage is an essential physiological process that continuously provides visual chromophore precursors to the retina under fasting conditions. This mechanism is critical for phototransduction, photoreceptor cell maintenance and survival, and in the support of visual function. While the membrane receptor STRA6 facilitates the blood transport of lipophilic vitamin A into the eye, it is not expressed in most peripheral organs, which are proposed to express a second membrane receptor for the uptake of vitamin A from circulating RBP4. The discovery of a novel vitamin A receptor, RBPR2, which is expressed in the liver and intestine, but not in the eye, alluded to this long-sort non-ocular membrane receptor for systemic RBP4-ROL uptake and transport. We have previously shown in zebrafish that the retinol-binding protein receptor 2 (Rbpr2) plays an important role in the transport of yolk vitamin A to the eye. Mutant rbpr2 zebrafish lines manifested in decreased ocular retinoid concentrations and retinal phenotypes. To investigate a physiological role for the second vitamin A receptor, RBPR2, in mammals and to analyze the metabolic basis of systemic vitamin A transport for retinoid homeostasis, we established a whole-body Rbpr2 knockout mouse (Rbpr2-/-) model. These mice were viable on both vitamin A-sufficient and -deficient diets. Rbpr2-/- mice that were fed a vitamin A-sufficient diet displayed lower ocular retinoid levels, decreased opsins, and manifested in decrease visual function, as measured by electroretinography. Interestingly, when Rbpr2-/- mice were fed a vitamin A-deficient diet, they additionally showed shorter photoreceptor outer segment phenotypes, altogether manifesting in a significant loss of visual function. Thus, under conditions replicating vitamin A sufficiency and deficiency, our analyses revealed that RBPR2-mediated systemic vitamin A transport is a regulated process that is important for vitamin A delivery to the eye when RBP4-bound ROL is the only transport pathway in the fasting condition or under vitamin A deficiency conditions.


Assuntos
Retinoides , Vitamina A , Animais , Proteínas de Transporte/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Retina/metabolismo , Retinoides/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Peixe-Zebra
11.
Nanomaterials (Basel) ; 11(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917548

RESUMO

Ocular gene therapy offers significant potential for preventing retinal dystrophy in patients with inherited retinal dystrophies (IRD). Adeno-associated virus (AAV) based gene transfer is the most common and successful gene delivery approach to the eye. These days, many studies are using non-viral nanoparticles (NPs) as an alternative therapeutic option because of their unique properties and biocompatibility. Here, we discuss the potential of carbon dots (CDs), a new type of nanocarrier for gene delivery to the retinal cells. The unique physicochemical properties of CDs (such as optical, electronic, and catalytic) make them suitable for biosensing, imaging, drug, and gene delivery applications. Efficient gene delivery to the retinal cells using CDs depends on various factors, such as photoluminescence, quantum yield, biocompatibility, size, and shape. In this review, we focused on different approaches used to synthesize CDs, classify CDs, various pathways for the intake of gene-loaded carbon nanoparticles inside the cell, and multiple studies that worked on transferring nucleic acid in the eye using CDs.

12.
Antioxidants (Basel) ; 10(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070383

RESUMO

Erythropoietin (EPO) plays an important role in erythropoiesis by its action in blocking apoptosis of progenitor cells and protects both photoreceptors and retinal ganglion cells from induced or inherited degeneration. A modified form of EPO, EPO-R76E has attenuated erythropoietic activity but is effective in inhibiting apoptosis, oxidative stress, and inflammation in several models of retinal degeneration. In this study, we used recombinant Adeno Associated Virus (AAV) to provide long-term sustained delivery of EPO-R76E and demonstrated its effects in a mouse model of dry-AMD in which retinal degeneration is induced by oxidative stress in the retinal pigment epithelial (RPE) cells. Experimental vector AAV-EPO-R76E and control vector AAV-GFP were packaged into serotype-1 (AAV1) to enable RPE selective expression. RPE oxidative stress-mediated retinal degeneration was induced by exon specific deletion of the protective enzyme MnSOD (encoded by Sod2) by cre/lox mechanism. Experimental mice received subretinal injection of AAV-EPO-R76E in the right eye and AAV-GFP in the left eye. Western blotting of RPE/choroid protein samples from AAV-EPO-R76E injected eyes showed RPE specific EPO expression. Retinal function was monitored by electroretinography (ERG). EPO-R76E over-expression in RPE delayed the retinal degeneration as measured by light microscopy in RPE specific Sod2 knockout mice. Delivery of EPO-R76E vector can be used as a tool to prevent retinal degeneration induced by RPE oxidative stress, which is implicated as a potential cause of Age-Related Macular Degeneration.

13.
Nanomaterials (Basel) ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445545

RESUMO

Ocular diseases can deteriorate vision to the point of blindness and thus can have a major impact on the daily life of an individual. Conventional therapies are unable to provide absolute therapy for all ocular diseases due to the several limitations during drug delivery across the blood-retinal barrier, making it a major clinical challenge. With recent developments, the vast number of publications undergird the need for nanotechnology-based drug delivery systems in treating ocular diseases. The tool of nanotechnology provides several essential advantages, including sustained drug release and specific tissue targeting. Additionally, comprehensive in vitro and in vivo studies have suggested a better uptake of nanoparticles across ocular barriers. Nanoparticles can overcome the blood-retinal barrier and consequently increase ocular penetration and improve the bioavailability of the drug. In this review, we aim to summarize the development of organic and inorganic nanoparticles for ophthalmic applications. We highlight the potential nanoformulations in clinical trials as well as the products that have become a commercial reality.

14.
Cells ; 10(6)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073294

RESUMO

Unconventional myosins, linked to deafness, are also proposed to play a role in retinal cell physiology. However, their direct role in photoreceptor function remains unclear. We demonstrate that systemic loss of the unconventional myosin MYO1C in mice, specifically causes rhodopsin mislocalization, leading to impaired visual function. Electroretinogram analysis of Myo1c knockout (Myo1c-KO) mice showed a progressive loss of photoreceptor function. Immunohistochemistry and binding assays demonstrated MYO1C localization to photoreceptor inner and outer segments (OS) and identified a direct interaction of rhodopsin with MYO1C. In Myo1c-KO retinas, rhodopsin mislocalized to rod inner segments (IS) and cell bodies, while cone opsins in OS showed punctate staining. In aged mice, the histological and ultrastructural examination of the phenotype of Myo1c-KO retinas showed progressively shorter photoreceptor OS. These results demonstrate that MYO1C is important for rhodopsin localization to the photoreceptor OS, and for normal visual function.


Assuntos
Proteínas do Olho/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Rodopsina/metabolismo , Animais , Dineínas/genética , Eletrorretinografia/métodos , Camundongos , Fenótipo , Rodopsina/genética
15.
Front Bioeng Biotechnol ; 8: 573407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102456

RESUMO

Vision loss is a major complication in common ocular infections and diseases such as bacterial keratitis, age-related macular degeneration (AMD) and diabetic retinopathy (DR). The prevalence of such ophthalmic diseases represents an urgent need to develop safe, effective, and long-term treatments. Current therapies are riddled with drawbacks and limitations which calls for the exploration of alternative drug delivery mechanisms. Toxicity of the inorganic metals and metal oxides used for drug delivery raise safety concerns that are alleviated with the alternate use of, a natural and organic polymer which is both biocompatible and environmentally friendly. Carbon dots (CDs) represent a great potential in novel biomedical applications due to their tunable fluorescence, biocompatibility, and ability to be conjugated with diverse therapeutic materials. There is a growing interest on the exploitation of these properties for drug delivery with enhanced bio-imaging. However, there are limited reports of CD applications for ophthalmic indications. In this review, we focus on the CD potential and the development of translational therapies for ophthalmic diseases. The current review presents better understanding of fabrication of CDs and how it may be useful in delivering anti-bacterial agents, anti-VEGF molecules as well as imaging for ophthalmic applications.

16.
Appl Sci (Basel) ; 10(14)2020.
Artigo em Inglês | MEDLINE | ID: mdl-38486792

RESUMO

The burgeoning field of nanotechnology aims to create and deploy nanoscale structures, devices, and systems with novel, size-dependent properties and functions. The nanotechnology revolution has sparked radically new technologies and strategies across all scientific disciplines, with nanotechnology now applied to virtually every area of research and development in the US and globally. NanoFlorida was founded to create a forum for scientific exchange, promote networking among nanoscientists, encourage collaborative research efforts across institutions, forge strong industry-academia partnerships in nanoscience, and showcase the contributions of students and trainees in nanotechnology fields. The 2019 NanoFlorida International Conference expanded this vision to emphasize national and international participation, with a focus on advances made in translating nanotechnology. This review highlights notable research in the areas of engineering especially in optics, photonics and plasmonics and electronics; biomedical devices, nano-biotechnology, nanotherapeutics including both experimental nanotherapies and nanovaccines; nano-diagnostics and -theranostics; nano-enabled drug discovery platforms; tissue engineering, bioprinting, and environmental nanotechnology, as well as challenges and directions for future research.

17.
PLoS One ; 13(9): e0203816, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30265681

RESUMO

Oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD). The dry form of AMD (geographic atrophy) is characterized by loss of RPE, photoreceptors, and macular pigments. The cumulative effects of oxidative stress impact mitochondrial function in RPE. In Sod2flox/floxVMD2-cre mice, the RPE specific deletion of Sod2, the gene for mitochondrial manganese superoxide dismutase (MnSOD), leads to elevated oxidative stress in retina and RPE, and causes changes in the RPE and underlying Bruch's membrane that share some features of AMD. This study tested the hypothesis that zeaxanthin supplementation would reduce oxidative stress and preserve RPE structure and function in these mice. Zeaxanthin in retina/RPE/choroid and liver was quantified by LC/MS, retinal function and structure were evaluated by electroretinogram (ERG) and spectral domain optical coherence tomography (SD-OCT), and antioxidant gene expression was measured by RT-PCR. After one month of supplementation, zeaxanthin levels were 5-fold higher in the retina/RPE/choroid and 12-fold higher in liver than in unsupplemented control mice. After four months of supplementation, amplitudes of the ERG a-wave (function of rod photoreceptors) and b-wave (function of the inner retina) were not different in supplemented and control mice. In contrast, the c-wave amplitude (a measure of RPE function) was 28% higher in supplemented mice than in control mice. Higher RPE/choroid expression of antioxidant genes (Cat, Gstm1, Hmox1, Nqo1) and scaffolding protein Sqstm1 were found in supplemented mice than in unsupplemented controls. Reduced nitrotyrosine content in the RPE/choroid was demonstrated by ELISA. Preliminary assessment of retinal ultrastructure indicated that supplementation supported better preservation of RPE structure with more compact basal infoldings and intact mitochondria. We conclude that daily zeaxanthin supplementation protected RPE cells from mitochondrial oxidative stress associated with deficiency in the MnSOD and thereby improved RPE function early in the disease course.


Assuntos
Atrofia/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Zeaxantinas/farmacologia , Animais , Antioxidantes/metabolismo , Atrofia/prevenção & controle , Suplementos Nutricionais , Modelos Animais de Doenças , Degeneração Macular/genética , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Superóxido Dismutase/metabolismo
18.
J Mol Med (Berl) ; 96(10): 1107-1118, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30105447

RESUMO

Aberrant growth of blood vessels in the choroid layer of the eye, termed choroidal neovascularization (CNV), is the pathological hallmark of exudative age-related macular degeneration (AMD), causing irreversible blindness among the elderly. Co-localization of proangiogenic factors and hypoxia inducible factors (HIF) in neovascular membranes from AMD eyes suggests the role of hypoxia in pathogenesis of CNV. In order to utilize hypoxic conditions in RPE for therapeutic purposes, we developed an optimized hypoxia regulated, RPE cell-specific gene therapy to inhibit choroidal neovascularization. An adeno-associated virus (AAV2) vector comprising a RPE-specific promoter and HIF-1 response elements (HRE) was designed to regulate production of human endostatin (a powerful angiostatic protein) in RPE. The vector was tested in a mouse model of laser-induced CNV using subretinal delivery. Spectral domain optical coherence tomography (SD-OCT) images from live mice and confocal images from lectin stained RPE flat mount sections demonstrated reduction in CNV areas by 80% compared to untreated eyes. Quantitative real-time polymerase chain reaction (qPCR) confirmed exogenous endostatin mRNA expression from the regulated vector that was significantly elevated 3, 7, and 14 days following laser treatment, but its expression was completely shut off after 45 days. Thus, RPE-specific, hypoxia-regulated delivery of anti-angiogenic proteins could be a valuable therapeutic approach to treat neovascular AMD at the time and in the ocular space where it arises. KEY POINTS: An optimized gene therapy vector targeting hypoxia and tissue-specific expression has been designed. The inhibitory role of gene therapy vector was tested in a mouse model of laser-induced CNV. An 80% reduction in choroidal neovascularization was achieved by the optimized vector. The expression of endostatin was limited to retinal pigment epithelium and regulated by hypoxia.


Assuntos
Neovascularização de Coroide/terapia , Terapia Genética , Hipóxia , Animais , Dependovirus , Endostatinas/genética , Endostatinas/metabolismo , Vetores Genéticos , Camundongos Endogâmicos C57BL , Parvovirinae/genética , Epitélio Pigmentado da Retina/metabolismo
19.
Invest Ophthalmol Vis Sci ; 58(2): 1237-1245, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28241311

RESUMO

Purpose: To investigate whether antioxidant gene therapy protects the structure and function of retina in a murine model of RPE atrophy, and to determine whether antioxidant gene therapy can prevent degeneration once it has begun. Methods: We induced mitochondrial oxidative stress in RPE by conditional deletion of Sod2, the gene for manganese superoxide dismutase (MnSOD). These mice exhibited localized atrophy of the RPE and overlying photoreceptors. We restored Sod2 to the RPE of one eye using adeno-associated virus (AAV) by subretinal injection at an early (6 weeks) and a late stage (6 months), injecting the other eye with an AAV vector expressing green fluorescent protein (GFP). Retinal degeneration was monitored over a period of 9 months by electroretinography (ERG) and spectral-domain optical coherence tomography (SD-OCT). Immunohistochemical and histologic analyses were conducted to measure oxidative stress markers and to visualize retinal structure. Results: One month after delivery, the AAV-Sod2 injection resulted in production of MnSod in the RPE and negligible expression in the neural retina. Electroretinography and OCT suggested no adverse effects due to increased expression of MnSOD or subretinal injection. Decrease in the ERG response and thinning retinal thickness was significantly delayed in eyes with early treatment with the Sod2 vector, but treatment at 6 months of age did not affect the ERG decline seen in these mice. Conclusions: We conclude that antioxidant gene therapy may be effective in preventing the detrimental effects of oxidative stress, but may not be beneficial once substantial tissue damage has occurred.


Assuntos
Antioxidantes/uso terapêutico , Terapia Genética/métodos , Retina/metabolismo , Degeneração Retiniana/terapia , Animais , Antioxidantes/farmacologia , Dependovirus/genética , Modelos Animais de Doenças , Eletrorretinografia , Deleção de Genes , Vetores Genéticos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Retina/fisiopatologia , Epitélio Pigmentado da Retina/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA