Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(16): 6695-6702, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37018510

RESUMO

Perfluorooctanoic acid (PFOA) is a part of a large group of anthropogenic, persistent, and bioaccumulative contaminants known as per- and polyfluoroalkyl substances (PFAS) that can be harmful to human health. In this work, we present the first ab initio molecular dynamics (AIMD) study of temperature-dependent degradation dynamics of PFOA on (100) and (110) surfaces of γ-Al2O3. Our results show that PFOA degradation does not occur on the pristine (100) surface, even when carried out at high temperatures. However, introducing an oxygen vacancy on the (100) surface facilitates an ultrafast (<100 fs) defluorination of C-F bonds in PFOA. We also examined degradation dynamics on the (110) surface and found that PFOA interacts strongly with Al(III) centers on the surface of γ-Al2O3, resulting in a stepwise breaking of C-F, C-C, and C-COO bonds. Most importantly, at the end of the degradation process, strong Al-F bonds are formed on the mineralized γ-Al2O3 surface, which prevents further dissociation of fluorine into the surrounding environment. Taken together, our AIMD simulations provide critical reaction mechanisms at a quantum level of detail and highlight the importance of temperature effects, defects, and surface facets for PFOA degradation on reactive surfaces, which have not been systematically explored or analyzed.


Assuntos
Fluorocarbonos , Simulação de Dinâmica Molecular , Humanos , Óxido de Alumínio , Caprilatos/química
2.
Environ Sci Technol ; 56(12): 8167-8175, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35481774

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are synthetic contaminants found in drinking groundwater sources and a wide variety of consumer products. Because of their adverse environmental and human health effects, remediation of these persistent compounds has attracted significant recent attention. To gain mechanistic insight into their remediation, we present the first ab initio study of PFAS degradation via hydrated electrons─a configuration that has not been correctly considered in previous computational studies up to this point. To capture these complex dynamical effects, we harness ab initio molecular dynamics (AIMD) simulations to probe the reactivities of perfluorooctanoic (PFOA) and perfluorooctane sulfonic acid (PFOS) with hydrated electrons in explicit water. We complement our AIMD calculations with advanced metadynamics sampling techniques to compute free energy profiles and detailed statistical analyses of PFOA/PFOS dynamics. Although our calculations show that the activation barrier for C-F bond dissociation in PFOS is three times larger than that in PFOA, all the computed free energy barriers are still relatively low, resulting in a diffusion-limited process. We discuss our results in the context of recent studies on PFAS degradation with hydrated electrons to give insight into the most efficient remediation strategies for these contaminants. Most importantly, we show that the degradation of PFASs with hydrated electrons is markedly different from that with excess electrons/charges, a common (but largely incomplete) approach used in several earlier computational studies.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Elétrons , Fluorocarbonos/análise , Humanos , Água , Poluentes Químicos da Água/análise
3.
Phys Chem Chem Phys ; 22(45): 26265-26277, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33174561

RESUMO

The basicity constant, or pKb, is an intrinsic physical property of bases that gives a measure of its proton affinity in macroscopic environments. While the pKb is typically defined in reference to the bulk aqueous phase, several studies have suggested that this value can differ significantly at the air-water interface (which can have significant ramifications for particle surface chemistry and aerosol growth modeling). To provide mechanistic insight into surface proton affinity, we carried out ab initio metadynamics calculations to (1) explore the free-energy profile of dimethylamine and (2) provide reasonable estimates of the pKb value in different solvent environments. We find that the free-energy profiles obtained with our metadynamics calculations show a dramatic variation, with interfacial aqueous dimethylamine pKb values being significantly lower than in the bulk aqueous environment. Furthermore, our metadynamics calculations indicate that these variations are due to reduced hydrogen bonding at the air-water surface. Taken together, our quantum mechanical metadynamics calculations show that the reactivity of dimethylamine is surprisingly complex, leading to pKb variations that critically depend on the different atomic interactions occurring at the microscopic molecular level.

4.
Phys Chem Chem Phys ; 19(15): 9912-9922, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28357425

RESUMO

The fluctuation dynamics of amine stretching frequencies, hydrogen bonds, dangling N-D bonds, and the orientation profile of the amine group of methylamine (MA) were investigated under ambient conditions by means of dispersion-corrected density functional theory-based first principles molecular dynamics (FPMD) simulations. Along with the dynamical properties, various equilibrium properties such as radial distribution function, spatial distribution function, combined radial and angular distribution functions and hydrogen bonding were also calculated. The instantaneous stretching frequencies of amine groups were obtained by wavelet transform of the trajectory obtained from FPMD simulations. The frequency-structure correlation reveals that the amine stretching frequency is weakly correlated with the nearest nitrogen-deuterium distance. The frequency-frequency correlation function has a short time scale of around 110 fs and a longer time scale of about 1.15 ps. It was found that the short time scale originates from the underdamped motion of intact hydrogen bonds of MA pairs. However, the long time scale of the vibrational spectral diffusion of N-D modes is determined by the overall dynamics of hydrogen bonds as well as the dangling ND groups and the inertial rotation of the amine group of the molecule.

5.
Phys Chem Chem Phys ; 18(43): 29979-29986, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27766328

RESUMO

We present the characteristic proton transfer process from water to the pyrazole anion, infrared signatures of hydroxyl groups and the free energy profile of the process in aqueous solution combining first principles simulations, wavelet analysis and metadynamics. Our results show that the presence of minimum three water molecules in the gas phase cluster with a particular arrangement is sufficient to facilitate the proton transfer process from water to the anion. The overall reaction is very rapid in aqueous solution, and the free energy barrier for this process is found to be 4.2 kcal mol-1. One of the earlier reported fundamental reasons for the transfer of proton from water to the anion is the change in the acidity of OH groups surrounding the anion. We have correlated the stretching frequencies of the surrounding OH groups with this acidity. We find that the development of less energetic vibrational states, and the OH mode having lowest average stretching frequency contains the most acidic proton. A large frequency shift of the OH mode belonging to one of the surrounding water molecules is observed during the transfer of proton from water to the anion; this shift is due to the change in acidity of the adjacent hydroxyl groups in the vicinity of the anion.

6.
ACS ES T Eng ; 4(1): 96-104, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38229882

RESUMO

Computational chemistry methods, such as density functional theory (DFT), have now become more common in environmental research, particularly for simulating the degradation of per- and polyfluoroalkyl substances (PFAS). However, the vast majority of PFAS computational studies have focused on conventional DFT approaches that only probe static, time-independent properties of PFAS near stationary points on the potential energy surface. To demonstrate the rich mechanistic information that can be obtained from time-dependent quantum dynamics calculations, we highlight recent studies using these advanced techniques for probing PFAS systems. We briefly discuss recent applications ranging from ab initio molecular dynamics to DFT-based metadynamics and real-time time-dependent DFT for probing PFAS degradation in various reactive environments. These quantum dynamical approaches provide critical mechanistic information that cannot be gleaned from conventional DFT calculations. We conclude with a perspective of promising research directions and recommend that these advanced quantum dynamics simulations be more widely used by the environmental research community to directly probe PFAS degradation dynamics and other environmental processes.

7.
JACS Au ; 4(8): 2979-2988, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39211584

RESUMO

Nonthermal plasmas provide a unique approach to electrically driven heterogeneous catalytic processes. Despite much interest from the community, fundamental activation pathways in these processes remain poorly understood. Here, we investigate how exposure to a nonthermal plasma sustained in an argon nonreactive atmosphere affects the desorption of carbon monoxide (CO) from platinum nanoparticles. Temperature-programmed desorption measurements indicate that the plasma reduces the effective binding energy (BE) of CO to Pt surfaces by as much as ∼0.3 eV, with the reduction in the BE scaling linearly with the plasma density. We find that the effective CO BE is most strongly reduced for under-coordinated sites (steps and edges) compared to well-coordinated sites (terraces). Density functional theory calculations suggest that this is due to plasma-induced charging and electric fields at the catalyst surface, which preferentially affect under-coordinated sites. This study provides direct experimental evidence of plasma-induced nonthermal activation of the adsorbate-catalyst couple.

8.
Nanoscale ; 14(20): 7621-7633, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35545095

RESUMO

The rational synthesis of durable, earth-abundant efficient electrocatalysts for the oxygen evolution reaction (OER) from water is one of the most important routes for storing renewable energy and minimizing fossil fuel combustion. The prime hurdles for effectively utilizing commercial RuO2 as (OER) electrocatalysts are its very low stability, catalyst deactivation, and high cost. In this work, we explored a Ru-integrated porous organic polymer (Ru@Bpy-POP) by a facile one-pot Friedel-Crafts alkylation strategy between redox-active (Ru(demob)3Cl2) and a carbazole unit, which is composed of unique features including an extended framework unit, isolated active sites, and tunable electrode kinetics. Ru@Bpy-POP can serve as a bridge between a Metal-Organic Framework (MOF) and POP-based catalytic systems with a balanced combination of covalent bonds (structural stability) and open metal sites (single site catalysis). Ru@Bpy-POP, deposited on a three-dimensional nickel foam electrode support, exhibits a promising electrocatalytic OER activity with an ultra-low ruthenium loading compared to a benchmark RuO2 catalyst, providing an overpotential of about 270 mV to reach 10 mA cm-2 in an alkaline medium. Moreover, a high current density of 248 mA cm-2 was achieved for the Ru@Bpy-POP catalyst at only 1.6 V (vs. RHE), which is much higher than 91 mA cm-2 for commercial RuO2. The robust, albeit highly conjugated, POP framework not only triggered facile electro-kinetics but also suppressed aggregation and metallic corrosion during electrolysis. In particular, the benefits of covalent integration of distinct Ru sites into the framework can modulate intermediate adsorption and charge density, which contributes to its exceptional OER activity. All of the critical steps involved in OER are complemented by Density Functional Theory (DFT) calculations, which suggest that electrocatalytic water oxidation proceeds from a closed-shell configuration to open-shell electronic configurations with high-spin states. These open-shell configurations are more stable than their closed-shell counterparts by 1 eV, improving the overall catalytic activity.

9.
J Phys Chem B ; 123(9): 2135-2146, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30759344

RESUMO

The extent to which the ions affect the nearby water molecules will decide the structure-making or breaking nature of those ions in aqueous solutions. The effects of a weakly coordinating anion on the structure, dynamics, and vibrational properties of water molecules are not so significant as compared to an anion capable of making strong ion-water hydrogen bonds. The present work deals with the first-principles molecular dynamics study of an aqueous solution of such a weakly coordinating anion, tetrafluoroborate (BF4-), using dispersion-corrected DFT-based first-principles molecular dynamics (FPMD) simulations. Various structural, dynamical, and spectral properties, such as radial distribution functions (RDFs), rotational dynamics, vibrational density of states (VDOS), hydrogen bond as well as dangling OH autocorrelation functions, and residence dynamics, were calculated to investigate the effects of the anion on nearby water molecules. The process of spectral diffusion was assessed through a time series wavelet transformation of trajectories obtained from FPMD simulations. The first ion-water solvation shell extends up to 5.5 Å, containing around 20 water molecules. The lifetime of the ion-water hydrogen bond is found to be 1.19 ps, whereas the water-water hydrogen bond lifetime is found to be 1.13 ps. Inside the solvation shell, the persistence time of dangling OH chromophores and the average frequency of OH modes inside the solvation shell are found to be more compared to bulk. Three time scales are found for solvation shell OH modes from the frequency-frequency correlation function. A very short time scale is found for the intact ion-water interaction; the short time scale is for the ion-water hydrogen bond, and the long time scale is for escape dynamics of water molecules from the ion solvation shell. From the mean squared displacement, it is found that solvation water molecules diffuse slower than the bulk. However, solvation shell water molecules show faster relaxation from the analysis of rotational anisotropy. Within the longer time scale of spectral diffusion, this process (which is related to various dynamics of the molecules) is not yet complete, as compared to fast anisotropic decay. This fact is similar to the experimental finding of spectral diffusion and anisotropy time scales in the aqueous solution of borohydride anion. The calculated results are also compared with available experimental data wherever possible.

10.
J Phys Chem B ; 123(19): 4278-4290, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31018092

RESUMO

We performed first-principles molecular dynamics simulations of relatively dilute aqueous solutions of sulfate and thiosulfate dianions to analyze the structure, dynamics, and vibrational spectral properties of water molecules around the solute, especially the spatially patterned solvent molecules in the first solvation layer and the extended layers. This study also involves the investigation of dynamics of dangling OH groups in these layers and their role in patterning the water molecules around the dianions. Structural evaluation of the systems is carried out by radial distribution functions, number integrals, and spatial distribution functions. The lifetime of dangling OH groups inside the solvation shell is compared more to that of the bulk. By constructing the O-H groups in three ensembles (S1, S2, and S3) around the anion, we show that the frequency distribution of OH modes in the S1 ensemble show red-shifting for both sulfate and thiosulfate. The O-H groups in the S2 ensemble of the sulfate-water system show red-shifting by 10 cm-1, while in the case of thiosulfate-water, these O-H groups show blue-shifting by 8 cm-1. The water molecules in S1 and S2 subensembles have slower dynamics compared to those in the bulk (S3). The dynamics of various kinds of hydrogen bonds were characterized by hydrogen bond population correlation functions. The spectral diffusion of solvation shell O-H modes was performed through a frequency-time correlation function. We find a significant amount of orientational retardation of water molecules in the S1 layer and moderate retardation in the S2 layer as compared to that in the bulk, S3 layer. All these findings, the red shift of the OH stretching frequency in S1 and S2 layers, slowing down of the orientational dynamics of OH vectors in S1 and S2 layers, and less diffusivity of water in S1 and S2 layers, show the long-range kosmotropic effect of multivalent sulfate and thiosulfate oxyanions. Due to the long-range effect, heterogeneous occupancy of water molecules is observed, and the water molecules are found to arrange in a patterned manner in the vicinity of anions with varied local density.

11.
ACS Omega ; 3(2): 2010-2017, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458509

RESUMO

Many anomalous properties of water can be explained on the basis of the coexistence of more than one density states: high-density water (HDW) and low-density water (LDW). We investigated these two phases of water molecules through first-principles molecular dynamics simulations using density functional theory (DFT) in conjunction with various van der Waals-corrected exchange and correlation functionals. Different density regions were found to exist due to the difference in short-range and long-range forces present in DFT potentials. These density regions were identified and analyzed on the basis of the distribution of molecules and voids present. We defined a local structure index to distinguish and find the probability of occurrence of these different states. HDW and LDW arise due to the presence of "interstitial water" molecules in between the first and second coordination shells. The population of interstitial water molecules is found to affect the overall dynamics of the system as they change the hydrogen bond pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA