Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 178: 107505, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33238166

RESUMO

Mosquitoes transmit many parasites and pathogens to humans that cause significant morbidity and mortality. As such, we are constantly looking for new methods to reduce mosquito populations, including the use of effective biological controls. Entomopathogenic fungi are excellent candidate biocontrol agents to control mosquitoes. Understanding the complex ecological, environmental, and molecular interactions between hosts and pathogens are essential to create novel, effective and safe biocontrol agents. Understanding how mosquitoes recognize and eliminate pathogens such as entomopathogenic fungi may allow us to create insect-order specific biocontrol agents to reduce pest populations. Here we summarize the current knowledge of fungal infection, colonization, development, and replication within mosquitoes and the innate immune responses of the mosquitoes towards the fungal pathogens, emphasizing those features required for an effective mosquito biocontrol agent.


Assuntos
Culicidae/microbiologia , Micoses/imunologia , Controle Biológico de Vetores , Animais , Beauveria/patogenicidade , Fungos/patogenicidade , Imunidade Inata , Controle de Mosquitos
2.
Neotrop Entomol ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382741

RESUMO

Aedes aegypti transmits the arboviruses that cause dengue, zika, and chikungunya. Entomopathogenic fungi are beneficial microorganisms that can be incorporated into current strategies against mosquitoes of public health concern. This study molecularly identified the Metarhizium anisopliae CG 153 isolate and evaluated its virulence against larvae, pupae, and adults (both males and females) of Ae. aegypti. Different concentrations of conidia were used (1 × 104-8 conidia mL-1). Larval and pupal survival was monitored daily for seven and three days, respectively, while adults were monitored for 15 days. The efficacy of M. anisopliae sensu stricto was concentration-dependent, with higher concentrations achieving better results, demonstrating greater virulence against larval and adult stages of Ae. aegypti. The fungus reduced the larval survival by 95,5% (1 × 108 con.mL-1), 94,4% (1 × 107 con.mL-1), 78,9% (1 × 106 con.mL-1), 62,2% (1 × 105 con.mL-1), and 41,1% (1 × 104 con.mL-1) after seven days. Adults also showed susceptibility to the fungus, with no observed difference in susceptibility between males and females. Over 15 days of monitoring, adult survival rates ranged from approximately 6.7% to 72%. Pupae exhibited lower susceptibility to the fungus across different concentrations, with survival rates ranging from approximately 87.8% to 100%. This study highlights the high effectiveness of M. anisopliae CG 153 against both Ae. aegypti larvae and adults (male and female) under controlled conditions, suggesting its promising potential for further evaluation and application in field conditions.

3.
Insects ; 14(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37103143

RESUMO

We assessed the effect of the entomopathogenic fungus Metarhizium anisopliae against Aedes aegypti. Conidia of M. anisopliae strains CG 489, CG 153, and IBCB 481 were grown in Adamek medium under different conditions to improve blastospore production. Mosquito larvae were exposed to blastospores or conidia of the three fungal strains at 1 × 107 propagules mL-1. M. anisopliae IBCB 481 and CG 153 reduced larval survival by 100%, whereas CG 489 decreased survival by about 50%. Blastospores of M. anisopliae IBCB 481 had better results in lowering larval survival. M. anisopliae CG 489 and CG 153 reduced larval survival similarly. For histopathology (HP) and scanning electron microscopy (SEM), larvae were exposed to M. anisopliae CG 153 for 24 h or 48 h. SEM confirmed the presence of fungi in the digestive tract, while HP confirmed that propagules reached the hemocoel via the midgut, damaged the peritrophic matrix, caused rupture and atrophy of the intestinal mucosa, caused cytoplasmic disorganization of the enterocytes, and degraded the brush border. Furthermore, we report for the first time the potential of M. anisopliae IBCB 481 to kill Ae. aegypti larvae and methods to improve the production of blastospores.

4.
Ticks Tick Borne Dis ; 14(4): 102184, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37105010

RESUMO

The use of chemical acaricides is the primary strategy to control tick infestations. Nonetheless, chemical resistance in ticks has been reported. Thus, complementary methods such as biological control using entomopathogenic fungi (EPF) have been investigated. EPF, although efficient, have their viability compromised when applied under natural conditions, which indicates that formulation development is essential. Some researchers have demonstrated the efficacy of ionic gelation in protecting EPF against deleterious abiotic factors. In the present study, we conducted the ionic gelation technique to encapsulate Metarhizium anisopliae (Metschn.) Sorokin (Hypocreales: Clavicipitaceae) conidia in 2% (EC 2%) and 3% (EC 3%) sodium alginate. Next, the quantity and viability of encapsulated conidia (EC) were determined. The morphology of particles was characterized by using Scanning Electron Microscopy (SEM). EC and non-encapsulated conidia (NEC) were stored at room temperature (26.8 °C) and in the freezer (-11.9 °C) to shelf-life testing. For UV-B irradiance tolerance and thermotolerance tests, EC and NEC were exposed to UV-B (6.0 or 8.0 kJ m - 2) and heat (42 ºC). In addition, biological parameters of Rhipicephalus microplus Canestrini (Acari: Ixodidae) engorged females exposed to EC were evaluated. The particles presented a spherical shape, more homogeneous (EC 2%) or heterogeneous (EC 3%). Encapsulation decreased (4.8×) the conidial concentration and did not affect their viability. On the other hand, encapsulation increased the shelf life of conidia at room temperature as well as their UV-B tolerance and thermotolerance (6 h). The fungal particles decreased the biological parameters of females more significantly than the NEC. As far as we know, we reported for the first time the use of the ionic gelation to encapsulate entomopathogenic fungi toward controlling R. microplus.


Assuntos
Ixodidae , Metarhizium , Rhipicephalus , Animais , Feminino , Rhipicephalus/microbiologia , Esporos Fúngicos , Controle Biológico de Vetores/métodos , Ixodidae/microbiologia
5.
J Fungi (Basel) ; 9(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37504747

RESUMO

Entomopathogenic fungi are promising as an environmentally benign alternative to chemical pesticides for mosquito control. The current study investigated the virulence of Metarhizium anisopliae blastospores against Aedes aegypti under both laboratory and field conditions. Virulence bioassays of conidia and blastospores were conducted in the laboratory, while field simulation bioassays were conducted under two conditions: totally shaded (TS) or partially shaded (PS). In the first bioassay (zero h), the larvae were added to the cups shortly after the preparation of the blastospores, and in the subsequent assays, larvae were added to the cups 3, 6, 9, and 12 days later. The survival of the larvae exposed to blastospores in the laboratory was zero on day two, as was the case for the larvae exposed to conidia on the sixth day. Under TS conditions, zero survival was seen on the third day of the bioassay. Under PS conditions, low survival rates were recorded on day 7. For the persistence bioassay under PS conditions, low survival rates were also observed. Metarhizium anisopliae blastospores were more virulent to Ae. aegypti larvae than conidia in the laboratory. Blastospores remained virulent under field simulation conditions. However, virulence rapidly declined from the third day of field bioassays. Formulating blastospores in vegetable oil could protect these propagules when applied under adverse conditions. This is the first time that blastospores have been tested against mosquito larvae under simulated field conditions, and the current study could be the basis for the development of a new biological control agent.

6.
Vet Parasitol ; 300: 109596, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34695723

RESUMO

In the present study, the lipid profile from the fat body and eggs of Rhipicephalus microplus was evaluated after exposure of engorged females to (E)-cinnamaldehyde and α-bisabolol, substances which have acaricide potential according to the literature. Engorged females collected from artificially infested cattle were immersed in a concentration of 10.0 mg/mL of each substance. Dissection of the female fat bodies was performed at different times (72 h and 120 h), for subsequent lipid extraction. In addition, on the fifth day of oviposition, were collected 50.0 ml50.0 mL aliquots of the egg mass of each treatment to perform the same lipid extraction procedure. To assess the lipid profiles, the samples were submitted to the thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GCMS) analysis. Furthermore, an in silico analysis was performed using PASS online® software to predict the possible molecular targets of (E)-cinnamaldehyde and α-bisabolol. As result, the main lipids identified from the fat body were triacylglycerides, fatty acids, and cholesterol, whereas, triacylglycerides (TAG), fatty acids (FA), and cholesterol (CHO) and cholesterol esters (CHOE), were identified in the eggs. The results also showed a significant increase (p < 0.05) of CHO in the fat body in the group exposed to (E)-cinnamaldehyde at 72 h (0.12 µg/fat body) and 120 h (0.46 µg/fat body), in the eggs from females treated with this same substance, there was a significant reduction (p < 0.05) in the amount of CHO (0.21 µg), compared to the water control group (0.45 µg). In the GCMS technique, 5 chemical classes were found, and variations were observed between these substances, mainly hydrocarbons and steroids, in the different groups, and (E)-cinnamaldehyde promoted the greatest changes. From the predictions of the in silico study, 38 and 20 targets were selected, respectively, which are mainly related to alterations in lipid metabolism, immune system and nervous system. This study provides the first report of changes in lipid metabolism of R. microplus exposed to (E)-cinnamaldehyde and α-bisabolol, as well as presenting possible activity on the molecular targets of these substances, expanding knowledge for the potential use of these compounds in the development of botanical acaricides.


Assuntos
Acaricidas , Rhipicephalus , Acaricidas/farmacologia , Acroleína/análogos & derivados , Animais , Bovinos , Corpo Adiposo , Feminino , Larva , Lipídeos , Sesquiterpenos Monocíclicos , Óvulo
7.
Microorganisms ; 8(9)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961808

RESUMO

Insects have established mutualistic symbiotic interactions with microorganisms that are beneficial to both host and symbiont. Many insects have exploited these symbioses to diversify and expand their ecological ranges. In the Hemiptera (i.e., aphids, cicadas, and true bugs), symbioses have established and evolved with obligatory essential microorganisms (primary symbionts) and with facultative beneficial symbionts (secondary symbionts). Primary symbionts are usually intracellular microorganisms found in insects with specialized diets such as obligate hematophagy or phytophagy. Most Heteroptera (true bugs), however, have gastrointestinal (GI) tract extracellular symbionts with functions analogous to primary endosymbionts. The triatomines, are vectors of the human parasite, Trypanosoma cruzi. A description of their small GI tract microbiota richness was based on a few culturable microorganisms first described almost a century ago. A growing literature describes more complex interactions between triatomines and bacteria with properties characteristic of both primary and secondary symbionts. In this review, we provide an evolutionary perspective of beneficial symbioses in the Hemiptera, illustrating the context that may drive the evolution of symbioses in triatomines. We highlight the diversity of the triatomine microbiota, bacterial taxa with potential to be beneficial symbionts, the unique characteristics of triatomine-bacteria symbioses, and the interactions among trypanosomes, microbiota, and triatomines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA