Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381043

RESUMO

The receptor for advanced glycation end products (RAGE) is a transmembrane receptor that belongs to the immunoglobulin superfamily and is extensively associated with chronic inflammation in non-transmissible diseases. As chronic inflammation is consistently present in neurodegenerative diseases, it was largely assumed that RAGE could act as a critical modulator of neuroinflammation in Parkinson's disease (PD), similar to what was reported for Alzheimer's disease (AD), where RAGE is postulated to mediate pro-inflammatory signaling in microglia by binding to amyloid-ß peptide. However, accumulating evidence from studies of RAGE in PD models suggests a less obvious scenario. Here, we review physiological aspects of RAGE and address the current questions about the potential involvement of this receptor in the cellular events that may be critical for the development and progression of PD, exploring possible mechanisms beyond the classical view of the microglial activation/neuroinflammation/neurodegeneration axis that is widely assumed to be the general mechanism of RAGE action in the adult brain.

2.
J Neurochem ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37984072

RESUMO

Treatment with bexarotene, a selective retinoid X receptor (RXR) agonist, significantly improves behavioral dysfunctions in various neurodegenerative animal models. Additionally, it activates neurodevelopmental and plasticity pathways in the brains of adult mice. Our objective was to investigate the impact of RXR activation by bexarotene on adult neural stem cells (aNSC) and their cell lineages. To achieve this, we treated NSCs isolated from the subventricular zone (SVZ) of adult rat brains from the proliferative stage to the differentiated status. The results showed that bexarotene-treated aNSC exhibited increased BrdU incorporation, SOX2+ dividing cell pairs, and cell migration from neurospheres, revealing that the treatment promotes self-renewing proliferation and cell motility in SVZ-aNCS. Furthermore, bexarotene induced a cell fate shift characterized by a significant increase in GFAP+/S100B+ differentiated astrocytes, which uncovers the participation of activated-RXR in astrogenesis. In the neuronal lineage, the fate shift was counteracted by bexarotene-induced enhancement of NeuN+ nuclei together with neurite network outgrowth, indicating that the RXR agonist stimulates SVZ-aNCS neuronal differentiation at later stages. These findings establish new connections between RXR activation, astro- and neurogenesis in the adult brain, and contribute to the development of therapeutic strategies targeting nuclear receptors for neural repair.

3.
J Neurochem ; 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661637

RESUMO

The receptor for advanced glycation end products (RAGE) is a protein of the immunoglobulin superfamily capable of regulating inflammation. Considering the role of this receptor in the initiation and establishment of neuroinflammation, and the limited understanding of the function of RAGE in the maintenance of this condition, this study describes the effects of RAGE inhibition in the brain, through an intranasal treatment with the antagonist FPS-ZM1, in an animal model of chronic neuroinflammation induced by acute intraperitoneal injection of lipopolysaccharide (LPS). Seventy days after LPS administration (2 mg/kg, i.p.), Wistar rats received, intranasally, 1.2 mg of FPS-ZM1 over 14 days. On days 88 and 89, the animals were submitted to the open-field test and were killed on day 90 after the intraperitoneal injection of LPS. Our results indicate that blockade of encephalic RAGE attenuates LPS-induced chronic neuroinflammation in different brain regions. Furthermore, we found that intranasal FPS-ZM1 administration reduced levels of gliosis markers, RAGE ligands, and α-synuclein in the substantia nigra pars compacta. Additionally, the treatment also reversed the increase in S100 calcium-binding protein B (RAGE ligand) in the cerebrospinal fluid and the cognitive-behavioral deficits promoted by LPS-less time spent in the central zone of the open-field arena (more time in the lateral zones), decreased total distance traveled, and increased number of freezing episodes. In summary, our study demonstrates the prominent role of RAGE in the maintenance of a chronic neuroinflammatory state triggered by a single episode of systemic inflammation and also points to possible future RAGE-based therapeutic approaches to treat conditions in which chronic neuroinflammation and increased α-synuclein levels could play a relevant role, such as in Parkinson's disease.

4.
Chemosphere ; 351: 141239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272134

RESUMO

Mercury (Hg) and vitamin A (VitA) are two environmental factors with potential health impacts, especially during pregnancy and early childhood. Fish and seafood may present elevated levels of methylmercury (MeHg), the major Hg derivative, and VitA. This study aimed to evaluate the transgenerational effects of exposure to MeHg and/or VitA on epigenetic and toxicological parameters in a Wistar rat model. Our findings revealed persistent toxicological effects in generations F1 and F2 following low/mild doses of MeHg and/or VitA exposure during dams' (F0) gestation and breastfeeding. Toxicological effects observed in F2 included chronic DNA damage, bone marrow toxicity, altered microglial content, reduced neuronal signal, and diminished male longevity. Sex-specific patterns were also observed. Co-exposure to MeHg and VitA showed both synergistic and antagonistic effects. Additionally, the study demonstrated that MeHg and VitA affected histone methylation and caused consistent effects in F2. While MeHg exposure has been associated with transgenerational inheritance effects in other organisms, this study provides the first evidence of transgenerational inheritance of MeHg and VitA-induced toxicological effects in rodents. Although the exact mechanism is not yet fully understood, these findings suggest that MeHg and VitA may perpetuate their impacts across generations. The study highlights the need for remedial policies and interventions to mitigate the potential health problems faced by future generations exposed to MeHg or VitA. Further research is warranted to investigate the transgenerational effects beyond F2 and determine the matrilineal or patrilineal inheritance patterns.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Humanos , Pré-Escolar , Ratos , Animais , Gravidez , Feminino , Masculino , Compostos de Metilmercúrio/toxicidade , Ratos Wistar , Vitamina A , Metilação
5.
J Parkinsons Dis ; 13(5): 717-728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37270812

RESUMO

Oligomerization and aggregation of misfolded forms of α-synuclein are believed to be key molecular mechanisms in Parkinson's disease (PD) and other synucleinopathies, so extensive research has attempted to understand these processes. Among diverse post-translational modifications that impact α-synuclein aggregation, glycation may take place at several lysine sites and modify α-synuclein oligomerization, toxicity, and clearance. The receptor for advanced glycation end products (RAGE) is considered a key regulator of chronic neuroinflammation through microglial activation in response to advanced glycation end products, such as carboxy-ethyl-lysine, or carboxy-methyl-lysine. The presence of RAGE in the midbrain of PD patients has been reported in the last decades and this receptor was proposed to have a role in sustaining PD neuroinflammation. However, different PD animal models demonstrated that RAGE is preferentially expressed in neurons and astrocytes, while recent evidence demonstrated that fibrillar, non-glycated α-synuclein binds to RAGE. Here, we summarize the available data on α-synuclein glycation and RAGE in the context of PD, and discuss about the questions yet to be answered that may increase our understanding of the molecular bases of PD and synucleinopathies.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , alfa-Sinucleína/metabolismo , Lisina , Reação de Maillard , Doenças Neuroinflamatórias , Doença de Parkinson/metabolismo , Receptor para Produtos Finais de Glicação Avançada
6.
Brain Behav Immun Health ; 14: 100253, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34589762

RESUMO

HSP70 is one of the main molecular chaperones involved in the cellular stress response. Besides its chaperone action, HSP70 also modulates the immune response. Increased susceptibility to toxic insults in intra- and extracellular environments has been associated with insufficient amounts of inducible HSP70 in adult neurons. On the other hand, exogenous HSP70 administration has demonstrated neuroprotective effects in experimental models of age-related disorders. In this regard, this study investigated the effects of exogenous HSP70 in an animal model of dopaminergic denervation of the nigrostriatal axis. After unilateral intrastriatal injection with 6-hydroxydopamine (6-OHDA), the animals received purified recombinant HSP70 through intranasal administration (2 µg/rat/day) for 15 days. Our results indicate a neuroprotective effect of intranasal HSP70 against dopaminergic denervation induced by 6-OHDA. Exogenous HSP70 improved motor impairment and reduced the loss of dopaminergic neurons caused by 6-OHDA. Moreover, HSP70 modulated neuroinflammatory response in the substantia nigra, an important event in Parkinson's disease pathogenesis. Specifically, HSP70 treatment reduced microglial activation and astrogliosis induced by 6-OHDA, as well as IL-1ß mRNA expression in this region. Also, recombinant HSP70 increased the protein content of HSP70 in the substantia nigra of rats that received 6-OHDA. These data suggest the neuroprotection of HSP70 against dopaminergic neurons damage after cellular stress. Finally, our results indicate that HSP70 neuroprotective action against 6-OHDA toxicity is related to inflammatory response modulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA