Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(1): 110-129.e31, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181737

RESUMO

X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.


Assuntos
Genes Ligados ao Cromossomo X , RNA Longo não Codificante , Cromossomo X , Animais , Feminino , Humanos , Masculino , Camundongos , Inativação Gênica , RNA Longo não Codificante/genética , Cromossomo X/genética , Células-Tronco Pluripotentes/metabolismo
2.
Cell ; 170(2): 312-323.e10, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28708999

RESUMO

Proteins of the Rbfox family act with a complex of proteins called the Large Assembly of Splicing Regulators (LASR). We find that Rbfox interacts with LASR via its C-terminal domain (CTD), and this domain is essential for its splicing activity. In addition to LASR recruitment, a low-complexity (LC) sequence within the CTD contains repeated tyrosines that mediate higher-order assembly of Rbfox/LASR and are required for splicing activation by Rbfox. This sequence spontaneously aggregates in solution to form fibrous structures and hydrogels, suggesting an assembly similar to the insoluble cellular inclusions formed by FUS and other proteins in neurologic disease. Unlike the pathological aggregates, we find that assembly of the Rbfox CTD plays an essential role in its normal splicing function. Rather than simple recruitment of individual regulators to a target exon, alternative splicing choices also depend on the higher-order assembly of these regulators within the nucleus.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Proteínas do Citoesqueleto/química , Humanos , Camundongos , Domínios Proteicos , Splicing de RNA , Alinhamento de Sequência , Fatores de Processamento de Serina-Arginina/metabolismo
3.
Mol Cell ; 84(8): 1496-1511.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38537639

RESUMO

Understanding the mechanisms of pre-mRNA splicing is limited by the technical challenges to examining spliceosomes in vivo. Here, we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of mammalian cell nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA bound with protected RNA fragments that precisely map to intronic branch sites across the transcriptome. These U2 complexes also contained the splicing regulators RBM5 and RBM10. We found RBM5 and RBM10 bound to nearly all branch site complexes and not simply those at regulated exons. The deletion of a conserved RBM5/RBM10 peptide sequence, including a zinc finger motif, disrupted U2 interaction and rendered the proteins inactive for the repression of many alternative exons. We propose a model where RBM5 and RBM10 regulate splicing as components of the U2 snRNP complex following branch site base pairing.


Assuntos
Ribonucleoproteína Nuclear Pequena U2 , Spliceossomos , Animais , Spliceossomos/genética , Spliceossomos/metabolismo , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Íntrons/genética , Cromatina/genética , Cromatina/metabolismo , Splicing de RNA , Precursores de RNA/metabolismo , Mamíferos/metabolismo
4.
Genes Dev ; 38(7-8): 294-307, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688681

RESUMO

Synaptic function in neurons is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear long noncoding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 using antisense oligonucleotides (ASOs) stimulates the expression of particular pre- and postsynaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized in puncta of both axons and dendrites that costain with Staufen1 protein, similar to neuronal RNA granules formed by locally translated mRNAs. Ribosome profiling of cultured mouse cortical neurons identified ribosome footprints within a 5' region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP-coding sequence in mouse embryonic stem cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wild-type neurons and showed that M1 expression was enhanced by synaptic stimulation with KCl. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.


Assuntos
Citoplasma , Neurônios , RNA Longo não Codificante , RNA Mensageiro , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Neurônios/metabolismo , Citoplasma/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células Cultivadas , Diferenciação Celular , Peptídeos/metabolismo , Peptídeos/genética
5.
Cell ; 165(3): 606-19, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27104978

RESUMO

Rbfox proteins control alternative splicing and posttranscriptional regulation in mammalian brain and are implicated in neurological disease. These proteins recognize the RNA sequence (U)GCAUG, but their structures and diverse roles imply a variety of protein-protein interactions. We find that nuclear Rbfox proteins are bound within a large assembly of splicing regulators (LASR), a multimeric complex containing the proteins hnRNP M, hnRNP H, hnRNP C, Matrin3, NF110/NFAR-2, NF45, and DDX5, all approximately equimolar to Rbfox. We show that splicing repression mediated by hnRNP M is stimulated by Rbfox. Virtually all the intron-bound Rbfox is associated with LASR, and hnRNP M motifs are enriched adjacent to Rbfox crosslinking sites in vivo. These findings demonstrate that Rbfox proteins bind RNA with a defined set of cofactors and affect a broader set of exons than previously recognized. The function of this multimeric LASR complex has implications for deciphering the regulatory codes controlling splicing networks.


Assuntos
Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Éxons , Células HEK293 , Humanos , Íntrons , Camundongos , Complexos Multiproteicos/metabolismo , Precursores de RNA/metabolismo
6.
Cell ; 166(5): 1147-1162.e15, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565344

RESUMO

Alternative splicing is prevalent in the mammalian brain. To interrogate the functional role of alternative splicing in neural development, we analyzed purified neural progenitor cells (NPCs) and neurons from developing cerebral cortices, revealing hundreds of differentially spliced exons that preferentially alter key protein domains-especially in cytoskeletal proteins-and can harbor disease-causing mutations. We show that Ptbp1 and Rbfox proteins antagonistically govern the NPC-to-neuron transition by regulating neuron-specific exons. Whereas Ptbp1 maintains apical progenitors partly through suppressing a poison exon of Flna in NPCs, Rbfox proteins promote neuronal differentiation by switching Ninein from a centrosomal splice form in NPCs to a non-centrosomal isoform in neurons. We further uncover an intronic human mutation within a PTBP1-binding site that disrupts normal skipping of the FLNA poison exon in NPCs and causes a brain-specific malformation. Our study indicates that dynamic control of alternative splicing governs cell fate in cerebral cortical development.


Assuntos
Processamento Alternativo , Córtex Cerebral/embriologia , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/citologia , Animais , Centrossomo/metabolismo , Córtex Cerebral/anormalidades , Córtex Cerebral/citologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Éxons , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de RNA
7.
Nature ; 613(7942): 160-168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477540

RESUMO

Multilocular adipocytes are a hallmark of thermogenic adipose tissue1,2, but the factors that enforce this cellular phenotype are largely unknown. Here, we show that an adipocyte-selective product of the Clstn3 locus (CLSTN3ß) present in only placental mammals facilitates the efficient use of stored triglyceride by limiting lipid droplet (LD) expansion. CLSTN3ß is an integral endoplasmic reticulum (ER) membrane protein that localizes to ER-LD contact sites through a conserved hairpin-like domain. Mice lacking CLSTN3ß have abnormal LD morphology and altered substrate use in brown adipose tissue, and are more susceptible to cold-induced hypothermia despite having no defect in adrenergic signalling. Conversely, forced expression of CLSTN3ß is sufficient to enforce a multilocular LD phenotype in cultured cells and adipose tissue. CLSTN3ß associates with cell death-inducing DFFA-like effector proteins and impairs their ability to transfer lipid between LDs, thereby restricting LD fusion and expansion. Functionally, increased LD surface area in CLSTN3ß-expressing adipocytes promotes engagement of the lipolytic machinery and facilitates fatty acid oxidation. In human fat, CLSTN3B is a selective marker of multilocular adipocytes. These findings define a molecular mechanism that regulates LD form and function to facilitate lipid utilization in thermogenic adipocytes.


Assuntos
Adipócitos , Proteínas de Ligação ao Cálcio , Metabolismo dos Lipídeos , Proteínas de Membrana , Animais , Feminino , Humanos , Camundongos , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Placenta , Triglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Ácidos Graxos/metabolismo , Hipotermia/metabolismo , Termogênese
8.
Cell ; 150(2): 279-90, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22817891

RESUMO

Macrophages respond to inflammatory stimuli by modulating the expression of hundreds of genes in a defined temporal cascade, with diverse transcriptional and posttranscriptional mechanisms contributing to the regulatory network. We examined proinflammatory gene regulation in activated macrophages by performing RNA-seq with fractionated chromatin-associated, nucleoplasmic, and cytoplasmic transcripts. This methodological approach allowed us to separate the synthesis of nascent transcripts from transcript processing and the accumulation of mature mRNAs. In addition to documenting the subcellular locations of coding and noncoding transcripts, the results provide a high-resolution view of the relationship between defined promoter and chromatin properties and the temporal regulation of diverse classes of coexpressed genes. The data also reveal a striking accumulation of full-length yet incompletely spliced transcripts in the chromatin fraction, suggesting that splicing often occurs after transcription has been completed, with transcripts retained on the chromatin until fully spliced.


Assuntos
Cromatina/genética , Perfilação da Expressão Gênica , Inflamação/genética , Macrófagos/metabolismo , Splicing de RNA , Animais , Regulação da Expressão Gênica , Lipídeo A/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Receptor de Interferon alfa e beta/genética , Receptores de Interferon/genética , Análise de Sequência de RNA , Transcrição Gênica
10.
Nature ; 587(7832): 145-151, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32908311

RESUMO

Nuclear compartments have diverse roles in regulating gene expression, yet the molecular forces and components that drive compartment formation remain largely unclear1. The long non-coding RNA Xist establishes an intra-chromosomal compartment by localizing at a high concentration in a territory spatially close to its transcription locus2 and binding diverse proteins3-5 to achieve X-chromosome inactivation (XCI)6,7. The XCI process therefore serves as a paradigm for understanding how RNA-mediated recruitment of various proteins induces a functional compartment. The properties of the inactive X (Xi)-compartment are known to change over time, because after initial Xist spreading and transcriptional shutoff a state is reached in which gene silencing remains stable even if Xist is turned off8. Here we show that the Xist RNA-binding proteins PTBP19, MATR310, TDP-4311 and CELF112 assemble on the multivalent E-repeat element of Xist7 and, via self-aggregation and heterotypic protein-protein interactions, form a condensate1 in the Xi. This condensate is required for gene silencing and for the anchoring of Xist to the Xi territory, and can be sustained in the absence of Xist. Notably, these E-repeat-binding proteins become essential coincident with transition to the Xist-independent XCI phase8, indicating that the condensate seeded by the E-repeat underlies the developmental switch from Xist-dependence to Xist-independence. Taken together, our data show that Xist forms the Xi compartment by seeding a heteromeric condensate that consists of ubiquitous RNA-binding proteins, revealing an unanticipated mechanism for heritable gene silencing.


Assuntos
Inativação Gênica , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas CELF1/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Feminino , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Inativação do Cromossomo X/genética
11.
Proc Natl Acad Sci U S A ; 120(28): e2220190120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399401

RESUMO

The MYC proto-oncogene contributes to the pathogenesis of more than half of human cancers. Malignant transformation by MYC transcriptionally up-regulates the core pre-mRNA splicing machinery and causes misregulation of alternative splicing. However, our understanding of how splicing changes are directed by MYC is limited. We performed a signaling pathway-guided splicing analysis to identify MYC-dependent splicing events. These included an HRAS cassette exon repressed by MYC across multiple tumor types. To molecularly dissect the regulation of this HRAS exon, we used antisense oligonucleotide tiling to identify splicing enhancers and silencers in its flanking introns. RNA-binding motif prediction indicated multiple binding sites for hnRNP H and hnRNP F within these cis-regulatory elements. Using siRNA knockdown and cDNA expression, we found that both hnRNP H and F activate the HRAS cassette exon. Mutagenesis and targeted RNA immunoprecipitation implicate two downstream G-rich elements in this splicing activation. Analyses of ENCODE RNA-seq datasets confirmed hnRNP H regulation of HRAS splicing. Analyses of RNA-seq datasets across multiple cancers showed a negative correlation of HNRNPH gene expression with MYC hallmark enrichment, consistent with the effect of hnRNP H on HRAS splicing. Interestingly, HNRNPF expression showed a positive correlation with MYC hallmarks and thus was not consistent with the observed effects of hnRNP F. Loss of hnRNP H/F altered cell cycle progression and induced apoptosis in the PC3 prostate cancer cell line. Collectively, our results reveal mechanisms for MYC-dependent regulation of splicing and point to possible therapeutic targets in prostate cancers.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H , Neoplasias da Próstata , Masculino , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Éxons/genética , Processamento Alternativo/genética , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
12.
RNA ; 29(8): 1274-1287, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37130703

RESUMO

Fluorescence in situ hybridization (FISH) is a widely used tool for quantifying gene expression and determining the location of RNA molecules in cells. We present an improved method for FISH probe production that yields high-purity probes with a wide range of fluorophores using standard laboratory equipment at low cost. The method modifies an earlier protocol that uses terminal deoxynucleotidyl transferase to add fluorescently labeled nucleotides to synthetic deoxyoligonucleotides. In our protocol, amino-11-ddUTP is joined to an oligonucleotide pool prior to its conjugation to a fluorescent dye, thereby generating pools of probes ready for a variety of modifications. This order of reaction steps allows for high labeling efficiencies regardless of the GC content or terminal base of the oligonucleotides. The degree of labeling (DOL) for spectrally distinct fluorophores (Quasar, ATTO, and Alexa dyes) was mostly >90%, comparable with commercial probes. The ease and low cost of production allowed the generation of probe sets targeting a wide variety of RNA molecules. Using these probes, FISH assays in C2C12 cells showed the expected subcellular localization of mRNAs and pre-mRNAs for Polr2a (RNA polymerase II subunit 2a) and Gapdh, and of the long noncoding RNAs Malat1 and Neat1 Developing FISH probe sets for several transcripts containing retained introns, we found that retained introns in the Gabbr1 and Noc2l transcripts are present in subnuclear foci separate from their sites of synthesis and partially coincident with nuclear speckles. This labeling protocol should have many applications in RNA biology.


Assuntos
Oligonucleotídeos , RNA , Hibridização in Situ Fluorescente/métodos , Íntrons/genética , RNA Mensageiro/genética , Sondas de Oligonucleotídeos/genética , Corantes Fluorescentes
13.
Genes Dev ; 31(10): 990-1006, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28637692

RESUMO

Understanding the biologic role of N6-methyladenosine (m6A) RNA modifications in mRNA requires an understanding of when and where in the life of a pre-mRNA transcript the modifications are made. We found that HeLa cell chromatin-associated nascent pre-mRNA (CA-RNA) contains many unspliced introns and m6A in exons but very rarely in introns. The m6A methylation is essentially completed upon the release of mRNA into the nucleoplasm. Furthermore, the content and location of each m6A modification in steady-state cytoplasmic mRNA are largely indistinguishable from those in the newly synthesized CA-RNA or nucleoplasmic mRNA. This result suggests that quantitatively little methylation or demethylation occurs in cytoplasmic mRNA. In addition, only ∼10% of m6As in CA-RNA are within 50 nucleotides of 5' or 3' splice sites, and the vast majority of exons harboring m6A in wild-type mouse stem cells is spliced the same in cells lacking the major m6A methyltransferase Mettl3. Both HeLa and mouse embryonic stem cell mRNAs harboring m6As have shorter half-lives, and thousands of these mRNAs have increased half-lives (twofold or more) in Mettl3 knockout cells compared with wild type. In summary, m6A is added to exons before or soon after exon definition in nascent pre-mRNA, and while m6A is not required for most splicing, its addition in the nascent transcript is a determinant of cytoplasmic mRNA stability.


Assuntos
Citoplasma/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Animais , Cromatina/metabolismo , Células-Tronco Embrionárias , Éxons/genética , Técnicas de Inativação de Genes , Células HeLa , Humanos , Íntrons/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos
14.
Genome Res ; 31(6): 1106-1119, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33832989

RESUMO

Steps of mRNA maturation are important gene regulatory events that occur in distinct cellular locations. However, transcriptomic analyses often lose information on the subcellular distribution of processed and unprocessed transcripts. We generated extensive RNA-seq data sets to track mRNA maturation across subcellular locations in mouse embryonic stem cells, neuronal progenitor cells, and postmitotic neurons. We find disparate patterns of RNA enrichment between the cytoplasmic, nucleoplasmic, and chromatin fractions, with some genes maintaining more polyadenylated RNA in chromatin than in the cytoplasm. We bioinformatically defined four regulatory groups for intron retention, including complete cotranscriptional splicing, complete intron retention in the cytoplasmic RNA, and two intron groups present in nuclear and chromatin transcripts but fully excised in cytoplasm. We found that introns switch their regulatory group between cell types, including neuronally excised introns repressed by polypyrimidine track binding protein 1 (PTBP1). Transcripts for the neuronal gamma-aminobutyric acid (GABA) B receptor, 1 (Gabbr1) are highly expressed in mESCs but are absent from the cytoplasm. Instead, incompletely spliced Gabbr1 RNA remains sequestered on chromatin, where it is bound by PTBP1, similar to certain long noncoding RNAs. Upon neuronal differentiation, Gabbr1 RNA becomes fully processed and exported for translation. Thus, splicing repression and chromatin anchoring of RNA combine to allow posttranscriptional regulation of Gabbr1 over development. For this and other genes, polyadenylated RNA abundance does not indicate functional gene expression. Our data sets provide a rich resource for analyzing many other aspects of mRNA maturation in subcellular locations and across development.


Assuntos
Precursores de RNA , Splicing de RNA , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Genes Controladores do Desenvolvimento , Íntrons/genética , Camundongos , Precursores de RNA/genética , Precursores de RNA/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(10): 5269-5279, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32086391

RESUMO

We sought to define the landscape of alternative pre-mRNA splicing in prostate cancers and the relationship of exon choice to known cancer driver alterations. To do so, we compiled a metadataset composed of 876 RNA-sequencing (RNA-Seq) samples from five publicly available sources representing a range of prostate phenotypes from normal tissue to drug-resistant metastases. We subjected these samples to exon-level analysis with rMATS-turbo, purpose-built software designed for large-scale analyses of splicing, and identified 13,149 high-confidence cassette exon events with variable incorporation across samples. We then developed a computational framework, pathway enrichment-guided activity study of alternative splicing (PEGASAS), to correlate transcriptional signatures of 50 different cancer driver pathways with these alternative splicing events. We discovered that Myc signaling was correlated with incorporation of a set of 1,039 cassette exons enriched in genes encoding RNA binding proteins. Using a human prostate epithelial transformation assay, we confirmed the Myc regulation of 147 of these exons, many of which introduced frameshifts or encoded premature stop codons. Our results connect changes in alternative pre-mRNA splicing to oncogenic alterations common in prostate and many other cancers. We also establish a role for Myc in regulating RNA splicing by controlling the incorporation of nonsense-mediated decay-determinant exons in genes encoding RNA binding proteins.


Assuntos
Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Códon de Terminação/genética , Simulação por Computador , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos/genética , Éxons , Feminino , Mutação da Fase de Leitura , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA-Seq , Transdução de Sinais , Software
16.
Nat Methods ; 16(4): 307-310, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923373

RESUMO

A major limitation of RNA sequencing (RNA-seq) analysis of alternative splicing is its reliance on high sequencing coverage. We report DARTS (https://github.com/Xinglab/DARTS), a computational framework that integrates deep-learning-based predictions with empirical RNA-seq evidence to infer differential alternative splicing between biological samples. DARTS leverages public RNA-seq big data to provide a knowledge base of splicing regulation via deep learning, thereby helping researchers better characterize alternative splicing using RNA-seq datasets even with modest coverage.


Assuntos
Aprendizado Profundo , Splicing de RNA , RNA/análise , Análise de Sequência de RNA , Algoritmos , Processamento Alternativo , Teorema de Bayes , Epigenômica , Éxons , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Hep G2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células K562 , Modelos Estatísticos , RNA/genética , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
17.
Genes Dev ; 28(22): 2518-31, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25403181

RESUMO

The pairing of 5' and 3' splice sites across an intron is a critical step in spliceosome formation and its regulation. Interactions that bring the two splice sites together during spliceosome assembly must occur with a high degree of specificity and fidelity to allow expression of functional mRNAs and make particular alternative splicing choices. Here, we report a new interaction between stem-loop 4 (SL4) of the U1 snRNA, which recognizes the 5' splice site, and a component of the U2 small nuclear ribonucleoprotein particle (snRNP) complex, which assembles across the intron at the 3' splice site. Using a U1 snRNP complementation assay, we found that SL4 is essential for splicing in vivo. The addition of free U1-SL4 to a splicing reaction in vitro inhibits splicing and blocks complex assembly prior to formation of the prespliceosomal A complex, indicating a requirement for a SL4 contact in spliceosome assembly. To characterize the interactions of this RNA structure, we used a combination of stable isotope labeling by amino acids in cell culture (SILAC), biotin/Neutravidin affinity pull-down, and mass spectrometry. We show that U1-SL4 interacts with the SF3A1 protein of the U2 snRNP. We found that this interaction between the U1 snRNA and SF3A1 occurs within prespliceosomal complexes assembled on the pre-mRNA. Thus, SL4 of the U1 snRNA is important for splicing, and its interaction with SF3A1 mediates contact between the 5' and 3' splice site complexes within the assembling spliceosome.


Assuntos
Splicing de RNA/fisiologia , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/metabolismo , Células HeLa , Humanos , Sequências Repetidas Invertidas/genética , Mutação , Ligação Proteica/genética , Sítios de Splice de RNA , Splicing de RNA/genética , Fatores de Processamento de RNA , RNA Nuclear Pequeno/genética
18.
Nat Rev Neurosci ; 17(5): 265-81, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27094079

RESUMO

Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain.


Assuntos
Processamento Alternativo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Humanos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(47): E11061-E11070, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30401736

RESUMO

MicroRNA (miRNA)-124 is expressed in neurons, where it represses genes inhibitory for neuronal differentiation, including the RNA binding protein PTBP1. PTBP1 maintains nonneuronal splicing patterns of mRNAs that switch to neuronal isoforms upon neuronal differentiation. We find that primary (pri)-miR-124-1 is expressed in mouse embryonic stem cells where mature miR-124 is absent. PTBP1 binds to this precursor RNA upstream of the miRNA stem-loop to inhibit mature miR-124 expression in vivo and DROSHA cleavage of pri-miR-124-1 in vitro. This function for PTBP1 in repressing miR-124 biogenesis defines an additional regulatory loop in the already intricate interplay between these two molecules. Applying mathematical modeling to examine the dynamics of this regulation, we find that the pool of pri-miR-124 whose maturation is blocked by PTBP1 creates a robust and self-reinforcing transition in gene expression as PTBP1 is depleted during early neuronal differentiation. While interlocking regulatory loops are often found between miRNAs and transcriptional regulators, our results indicate that miRNA targeting of posttranscriptional regulators also reinforces developmental decisions. Notably, induction of neuronal differentiation observed upon PTBP1 knockdown likely results from direct derepression of miR-124, in addition to indirect effects previously described.


Assuntos
Regulação da Expressão Gênica/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , Neurônios/citologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Animais , Linhagem Celular Tumoral , Células-Tronco Embrionárias/metabolismo , Técnicas de Inativação de Genes , Camundongos , Modelos Teóricos , Neuroblastoma/metabolismo , Neurogênese/genética , Processamento Pós-Transcricional do RNA/genética , Ribonuclease III/metabolismo
20.
Genes Dev ; 26(5): 445-60, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22357600

RESUMO

The Rbfox proteins (Rbfox1, Rbfox2, and Rbfox3) regulate the alternative splicing of many important neuronal transcripts and have been implicated in a variety of neurological disorders. However, their roles in brain development and function are not well understood, in part due to redundancy in their activities. Here we show that, unlike Rbfox1 deletion, the CNS-specific deletion of Rbfox2 disrupts cerebellar development. Genome-wide analysis of Rbfox2(-/-) brain RNA identifies numerous splicing changes altering proteins important both for brain development and mature neuronal function. To separate developmental defects from alterations in the physiology of mature cells, Rbfox1 and Rbfox2 were deleted from mature Purkinje cells, resulting in highly irregular firing. Notably, the Scn8a mRNA encoding the Na(v)1.6 sodium channel, a key mediator of Purkinje cell pacemaking, is improperly spliced in RbFox2 and Rbfox1 mutant brains, leading to highly reduced protein expression. Thus, Rbfox2 protein controls a post-transcriptional program required for proper brain development. Rbfox2 is subsequently required with Rbfox1 to maintain mature neuronal physiology, specifically Purkinje cell pacemaking, through their shared control of sodium channel transcript splicing.


Assuntos
Cerebelo/embriologia , Neurônios Motores/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Cerebelo/citologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/metabolismo , Splicing de RNA/genética , Fatores de Processamento de RNA , Canais de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA