Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Conserv Biol ; 27(2): 373-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23240629

RESUMO

Dynamic conservation of forest genetic resources (FGR) means maintaining the genetic diversity of trees within an evolutionary process and allowing generation turnover in the forest. We assessed the network of forests areas managed for the dynamic conservation of FGR (conservation units) across Europe (33 countries). On the basis of information available in the European Information System on FGR (EUFGIS Portal), species distribution maps, and environmental stratification of the continent, we developed ecogeographic indicators, a marginality index, and demographic indicators to assess and monitor forest conservation efforts. The pan-European network has 1967 conservation units, 2737 populations of target trees, and 86 species of target trees. We detected a poor coincidence between FGR conservation and other biodiversity conservation objectives within this network. We identified 2 complementary strategies: a species-oriented strategy in which national conservation networks are specifically designed for key target species and a site-oriented strategy in which multiple-target units include so-called secondary species conserved within a few sites. The network is highly unbalanced in terms of species representation, and 7 key target species are conserved in 60% of the conservation units. We performed specific gap analyses for 11 tree species, including assessment of ecogeographic, demographic, and genetic criteria. For each species, we identified gaps, particularly in the marginal parts of their distribution range, and found multiple redundant conservation units in other areas. The Mediterranean forests and to a lesser extent the boreal forests are underrepresented. Monitoring the conservation efficiency of each unit remains challenging; however, <2% of the conserved populations seem to be at risk of extinction. On the basis of our results, we recommend combining species-oriented and site-oriented strategies.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Variação Genética , Árvores/genética , Europa (Continente) , Especificidade da Espécie
2.
Tree Physiol ; 30(2): 264-74, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20022864

RESUMO

Dormancy release as influenced by duration of outdoor winter chilling in Florence (Italy) was studied under different photoperiodic and temperature treatments in collected twigs of two European (Ulmus glabra Huds. and Ulmus minor Mill.) and four Asian (Ulmus pumila L., Ulmus parvifolia Jacq., Ulmus macrocarpa Hance and Ulmus villosa Brandis) elm clones. Photoperiod had no effect on dormancy release, and there was no evidence that photoperiod affected bud burst during quiescence in the studied elm clones. Thermal time (day degrees >0 degrees C) to bud burst decreased in all the clones with increasing outdoor chilling. Although all the clones exhibited a rather weak dormancy, they significantly differed from each other. Dormancy was released earlier in the Asian than in the European clones, and the clones could be ranked from the U. pumila clone (very weak and short dormancy) to the U. minor clone (relatively stronger and longer dormancy), the other clones being intermediate. In all the clones except U. minor, the observed decrement in thermal time to bud burst was efficiently explained as an inverse exponential function of the number of chill days < or =5 degrees C received outdoor in autumn and winter. Endodormancy, as measured by the single-node cuttings test, was weak and short in all the clones. The latter result suggests that correlative inhibitions were largely responsible for preventing bud burst during winter in these elm clones.


Assuntos
Fotoperíodo , Brotos de Planta/crescimento & desenvolvimento , Temperatura , Ulmus/crescimento & desenvolvimento
3.
Am J Bot ; 90(8): 1107-12, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21659210

RESUMO

Studies of developmental stability can provide insights into the amount of genetic or environmental stress experienced by individuals or populations. In the present study, we used young plants of Acer platanoides (Norway maple) and Betula pendula (silver birch), two distantly related tree species with widely different leaf morphologies, to compare the expression of developmental instability in two contrasting environments: one with free access to nutrients and the other with a severely limited supply of nutrients. Using the difference in size between the right and left side of each leaf as a measure of developmental instability, we found no effect of nutrient deficiency on leaf asymmetry, despite large sample sizes (370-380 plants per species and treatment) and evidence for stress-related changes in overall leaf size and plant biomass. Moreover, there was no consistent relationship between individual leaf asymmetry and plant biomass within each nutrient treatment. In view of these observations, leaf asymmetry appears to be a poor indicator of nutrient stress in young plants of Acer platanoides and Betula pendula.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA