Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Pharm ; 14(10): 3539-3549, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28880092

RESUMO

Theranostics is a strategy that combines multiple functions such as targeting, stimulus-responsive drug release, and diagnostic imaging into a single platform, often with the aim of developing personalized medicine.1,2 Based on this concept, several well-established hyperbranched polymeric theranostic nanoparticles were synthesized and characterized as model nanomedicines to investigate how their properties affect the distribution of loaded drugs at both the cell and whole animal levels. An 8-mer peptide aptamer was covalently bound to the periphery of the nanoparticles to achieve both targeting and potential chemosensitization functionality against heat shock protein 70 (Hsp70). Doxorubicin was also bound to the polymeric carrier as a model chemotherapeutic drug through a degradable hydrazone bond, enabling pH-controlled release under the mildly acid conditions that are found in the intracellular compartments of tumor cells. In order to track the nanoparticles, cyanine-5 (Cy5) was incorporated into the polymer as an optical imaging agent. In vitro cellular uptake was assessed for the hyperbranched polymer containing both doxorubicin (DOX) and Hsp70 targeted peptide aptamer in live MDA-MB-468 cells, and was found to be greater than that of either the untargeted, DOX-loaded polymer or polymer alone due to the specific affinity of the peptide aptamer for the breast cancer cells. This was also validated in vivo with the targeted polymers showing much higher accumulation within the tumor 48 h postinjection than the untargeted analogue. More detailed assessment of the nanomedicine distribution was achieved by directly following the polymeric carrier and the doxorubicin at both the in vitro cellular level via compartmental analysis of confocal images of live cells and in whole tumors ex vivo using confocal imaging to visualize the distribution of the drug in tumor tissue as a function of distance from blood vessels. Our results indicate that this polymeric carrier shows promise as a cancer theranostic, demonstrating active targeting to tumor cells with the capability for simultaneous drug release.


Assuntos
Antineoplásicos/farmacocinética , Aptâmeros de Peptídeos/química , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Químicos , Nanopartículas/química , Polímeros/química , Medicina de Precisão/métodos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Langmuir ; 33(2): 485-493, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28054787

RESUMO

The interactions of cells with the surface of materials is known to be influenced by a range of factors that include chemistry and roughness; however, it is often difficult to probe these factors individually without also changing the others. Here we investigate the role of roughness on cell adhesion while maintaining the same underlying chemistry. This was achieved by using a polymerization in mold technique to prepare poly(hydroxymethyl methacrylate) hydrogels with either a flat topography or a topography that replicated the microscale features of lotus leaves. These materials were then assessed for cell adhesion, and atomic force microscopy and contact angle analysis were then used to probe the physical reasons for the differing behavior in relation to cell adhesion.


Assuntos
Hidrogéis/química , Lotus/anatomia & histologia , Folhas de Planta/anatomia & histologia , Animais , Adesão Celular/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Microscopia de Força Atômica , Poli-Hidroxietil Metacrilato/química , Poli-Hidroxietil Metacrilato/farmacologia
3.
J Am Chem Soc ; 136(6): 2413-9, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24437730

RESUMO

Understanding the complex nature of diseased tissue in vivo requires development of more advanced nanomedicines, where synthesis of multifunctional polymers combines imaging multimodality with a biocompatible, tunable, and functional nanomaterial carrier. Here we describe the development of polymeric nanoparticles for multimodal imaging of disease states in vivo. The nanoparticle design utilizes the abundant functionality and tunable physicochemical properties of synthetically robust polymeric systems to facilitate targeted imaging of tumors in mice. For the first time, high-resolution (19)F/(1)H magnetic resonance imaging is combined with sensitive and versatile fluorescence imaging in a polymeric material for in vivo detection of tumors. We highlight how control over the chemistry during synthesis allows manipulation of nanoparticle size and function and can lead to very high targeting efficiency to B16 melanoma cells, both in vitro and in vivo. Importantly, the combination of imaging modalities within a polymeric nanoparticle provides information on the tumor mass across various size scales in vivo, from millimeters down to tens of micrometers.


Assuntos
Imagem Multimodal , Nanopartículas , Polímeros/síntese química , Animais , Linhagem Celular Tumoral , Células Cultivadas , Radioisótopos de Flúor , Camundongos , Microscopia Confocal , Nanopartículas/química , Polímeros/química
4.
Langmuir ; 30(8): 2249-58, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24548062

RESUMO

Plasmonic gold nanoassemblies that self-assemble with the aid of linking molecules or polymers have the potential to yield controlled hierarchies of morphologies and consequently result in materials with tailored optical (e.g., localized surface plasmon resonances (LSPR)) and spectroscopic properties (e.g., surface-enhanced Raman scattering (SERS)). Molecular linkers that are structurally well-defined are promising for forming hybrid nanoassemblies which are stable in aqueous solution and are increasingly finding application in nanomedicine. Despite much ongoing research in this field, the precise role of molecular linkers in governing the morphology and properties of the hybrid nanoassemblies remains unclear. Previously we have demonstrated that branched linkers, such as hyperbranched polymers, with specific anchoring end groups can be successfully employed to form assemblies of gold NPs demonstrating near-infrared SPRs and intense SERS scattering. We herein introduce a tailored polymer as a versatile molecular linker, capable of manipulating nanoassembly morphologies and hot-spot density. In addition, this report explores the role of the polymeric linker architecture, specifically the degree of branching of the tailored polymer in determining the formation, morphology, and properties of the hybrid nanoassemblies. The degree of branching of the linker polymer, in addition to the concentration and number of anchoring groups, is observed to strongly influence the self-assembly process. The assembly morphology shifts primarily from 1D-like chains to 2D plates and finally to 3D-like globular structures, with increase in degree of branching of the macromolecular linker. Insights have been gained into how the morphology influences the SERS performance of these nanoassemblies with respect to hot-spot density. These findings supplement the understanding of the morphology determining nanoassembly formation and pave the way for the possible application of these nanoassemblies as SERS biosensors for medical diagnostics.

5.
Langmuir ; 29(26): 8266-74, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23751158

RESUMO

Gold nanoparticles (AuNPs) have many interesting optical properties, which are derived from their surface plasmon resonance (SPR). However, the SPR of single AuNPs occurs around 520 nm, which is a limitation for biomedical imaging applications, because the maximum falls outside the tissue transparency window (∼650-1000 nm). Here the aggregation of AuNPs is mediated by balancing aggregation and steric stabilization processes. This is achieved by varying the relative amounts of hydrophobic small molecules, which act as aggregating agents, and end functional hydrophilic polymers that serve as steric stabilizing agents. This approach allows the position of the SPR shifted into the tissue transparency window, while maintaining colloidal stability. Importantly, increased depolarized scattering and surface enhanced Raman scattering (SERS) cross sections in this region are achieved compared to the single nanoparticles. By varying the structure of the aggregating agent slightly, the SERS spectra exhibit significant changes, thus demonstrating the potential to encode different aggregates. The aggregates have potential applications in biomedical imaging, as an encoding strategy for combinatorial chemistry, and for use in flow cytometry applications.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Dissulfetos/química , Interações Hidrofóbicas e Hidrofílicas , Luz , Nanopartículas Metálicas/ultraestrutura , Metacrilatos/química , Microscopia Eletrônica de Transmissão , Imagem Molecular , Polietilenoglicóis/química , Espalhamento de Radiação , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
6.
Langmuir ; 29(2): 525-33, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23244573

RESUMO

In the past few years, remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures. However, the application of such plasmonic nanostructures in biomedicine remains challenging because of the lack of facile and robust assembly methods for producing stable nanostructures. Previous attempts to achieve plasmonic nanoassemblies using molecular ligands were limited by the lack of flexibility that could be exercised in forming them. Here, we report the utilization of tailor-made hyperbranched polymers (HBP) as linkers to assemble gold nanoparticles (NPs) into nanoassemblies. The ease and flexibility in tuning the particle size and number of branch ends of an HBP make it an ideal candidate as a linker, as opposed to DNA, small organic molecules, and linear or dendrimeric polymers. We report a strong correlation of polymer (HBP) concentration with the size of the hybrid nanoassemblies and "hot-spot" density. We have shown that such solutions of stable HBP-gold nanoassemblies can be barcoded with various Raman tags to provide improved surface-enhanced Raman scattering (SERS) compared to that of nonaggregated NP systems. These Raman-barcoded hybrid nanoassemblies, with further optimization of the NP shape, size, and hot-spot density, may find application as diagnostic tools in nanomedicine.

7.
J Colloid Interface Sci ; 634: 703-714, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563427

RESUMO

HYPOTHESIS: Modifying surfaces with concentrated polymer brushes (CPBs) is an effective way to reduce friction of tribo-pairs lubricated with liquids. We investigate the hypothesis that colloids grafted with CPBs (hybrid colloids) can deposit onto tribo-substrates by varying the solvent quality with respect to the polymer, in order to obtain ultra-low coefficients of friction (CoFs), so-called superlubricity. EXPERIMENTS: Hybrid colloids are synthesized and characterized, and a dynamic light scattering compares their swellings in aqueous solutions of glycerol or polyethylene glycol. A mini-traction machine with viscoelastic tribo-pairs is used for lubrication experiments. Adsorption of colloids and film structures are tested using a quartz crystal microbalance and an atomic force microscope. FINDINGS: The solvent controls whether hybrid colloids spontaneously adsorb to the substrate under quiescent conditions or require contact forces to enable (tribo-)deposition. In both cases, the friction in the boundary-mixed lubrication regimes is lower upon increasing the degree of swelling of CPBs and upon increasing coverage of deposited colloids. The greatest lubrication enhancement and surface coverage occur for the spontaneously adsorbed colloids, with ultra-low CoFs of order 10-3 over a large range of speeds. The results demonstrate the potential for hybrid colloids to be used as solvent dispersible "friction modifier additives".


Assuntos
Polietilenoglicóis , Polímeros , Polímeros/química , Propriedades de Superfície , Solventes/química , Coloides/química
8.
Int J Biol Macromol ; 229: 974-993, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36584782

RESUMO

Poly(aspartic acid) (PASP) is a biodegradable, biocompatible water-soluble synthetic anionic polypeptide. PASP has shown a strong affinity and thus robust complexation with heavy and alkaline earth metal ions, from which several applications are currently benefiting, and several more could also originate. This paper discusses different areas where the ion chelation ability of PASP has thus far been exploited. Due to its calcium chelation ability, PASP prevents precipitation of calcium salts and hence is widely used as an effective scale inhibitor in industry. Due to potassium chelation, PASP prevents precipitation of potassium tartrate and is employed as an efficient and edible stabilizer for wine preservation. Due to iron chelation, PASP inhibits corrosion of steel surfaces in harsh environments. Due to chelation, PASP can also enhance stability of various colloidal systems that contain metal ions. The chelation ability of PASP alleviated the toxicity of heavy metals in Zebrafish, inhibited the formation of kidney stones and dissolved calcium phosphate which is the main mineral of the calcified vasculature. These findings and beyond, along with the biocompatibility and biodegradability of the polymer could direct future investigations towards chelation therapy by PASP and other novel and undiscovered areas where metal ions play a key role.


Assuntos
Ácido Aspártico , Cálcio , Animais , Peixe-Zebra , Peptídeos , Quelantes/farmacologia
9.
J Mater Chem B ; 11(12): 2650-2662, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36655707

RESUMO

This paper describes the preparation of poly(succinimide) nanoparticles (PSI NPs) and investigates their properties and characteristics. Employing direct and inverse precipitation methods, stable PSI NPs with tunable size and narrow dispersity were prepared without the use of any stabilizer or emulsifier. It was demonstrated that PSI NPs convert to poly(aspartic acid) (PASP) gradually under physiological conditions (37 °C, pH 7.4), while remaining stable under mildly acidic conditions. The dissolution profile was tuned and delayed by chemical modification of PSI. Through grafting a fluorophore to the PSI backbone, it was also demonstrated that such a spontaneous conversion could offer great potential for oral delivery of therapeutic agents to the colon. Sustained PASP synthesis also contributed to a sustained reduction of reactive oxygen species induced by iron. Furthermore, PSI NPs effectively prevented in vitro calcification of smooth muscle cells. This was attributed to the chelation of calcium ions to PASP, thereby inhibiting calcium deposition, because under cell culture conditions PSI NPs serve as reservoirs for the sustained synthesis of PASP. Overall, this study sheds light on the preparation and features of biocompatible and biodegradable PSI-based NPs and paves the way for further research to discover as-yet unfulfilled potential of this polymer in the form of nanoparticles.


Assuntos
Nanopartículas , Calcificação Vascular , Humanos , Ácido Aspártico/química , Cálcio , Nanopartículas/química , Succinimidas
10.
ACS Nano ; 17(19): 18775-18791, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650798

RESUMO

Although poly(aspartic acid) (PASP), a strong calcium chelating agent, may be potentially effective in inhibition of vascular calcification, its direct administration may lead to side effects. In this study, we employed polysuccinimide, a precursor of PASP, to prepare targeted polysuccinimide-based nanoparticles (PSI NPs) that not only acted as a prodrug but also functioned as a carrier of additional therapeutics to provide powerful synergistic vascular anticalcification effect. This paper shows that chemically modified PSI-NPs can serve as effective nanocarriers for loading of hydrophobic drugs, in addition to anticalcification and antireactive oxygen species (anti-ROS) activities. Curcumin (Cur), with high loading efficiency, was encapsulated into the NPs. The NPs were stable for 16 h in physiological conditions and then slowly dissolved/hydrolyzed to release the therapeutic PASP and the encapsulated drug. The drug release profile was found to be in good agreement with the NP dissolution profile such that complete release occurred after 48 h at physiological conditions. However, under acidic conditions, the NPs were stable, and Cur cumulative release reached only 30% after 1 week. Though highly effective in the prevention of calcium deposition, PSI NPs could not prevent the osteogenic trans-differentiation of vascular smooth muscle cells (VSMCs). The presence of Cur addressed this problem. It not only further reduced ROS level in macrophages but also prevented osteogenic differentiation of VSMCs in vitro. The NPs were examined in vivo in a rat model of vascular calcification induced by kidney failure through an adenine diet. The inclusion of Cur and PSI NPs combined the therapeutic effects of both. Cur-loaded NPs significantly reduced calcium deposition in the aorta without adversely affecting bone integrity or noticeable side effects/toxicity as examined by organ histological and serum biochemistry analyses.

11.
J Med Chem ; 66(1): 538-552, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36516997

RESUMO

Multimodal imaging provides rich biological information, which can be exploited to study drug activity, disease associated phenotypes, and pharmacological responses. Here we show discovery and validation of a new probe targeting the endocannabinoid α/ß-hydrolase domain 6 (ABHD6) enzyme by utilizing positron emission tomography (PET) and matrix-assisted laser desorption/ionization (MALDI) imaging. [18F]JZP-MA-11 as the first PET ligand for in vivo imaging of the ABHD6 is reported and specific uptake in ABHD6-rich peripheral tissues and major brain regions was demonstrated using PET. A proof-of-concept study in nonhuman primate confirmed brain uptake. In vivo pharmacological response upon ABHD6 inhibition was observed by MALDI imaging. These synergistic imaging efforts used to identify biological information cannot be obtained by a single imaging modality and hold promise for improving the understanding of ABHD6-mediated endocannabinoid metabolism in peripheral and central nervous system disorders.


Assuntos
Endocanabinoides , Hidrolases , Animais , Endocanabinoides/metabolismo , Hidrolases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Monoacilglicerol Lipases , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons
12.
Langmuir ; 28(45): 15876-88, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23088516

RESUMO

The interactions of block copolymers with surfaces can be controlled by coating those surfaces with appropriate statistical copolymers. Usually, a statistical copolymer comprised of monomer units identical to those of the block copolymer is used; that is, typically a poly(styrene)-stat-poly(methyl methacrylate) (PS-stat-PMMA) is used to direct the alignment of poly(styrene)-block-poly(methyl methacrylate) (PS-block-PMMA), and poly(styrene)-stat-poly(2-vinylpyridine) (PS-stat-P2VP) has been used for poly(styrene)-block-poly(2-vinylpyridine) (PS-block-P2VP). Reports of controlling the orientation of block copolymers with statistical copolymers with a dissimilar composition are limited. Here, we demonstrate that this method can be further extended to show that PS-stat-PMMA can be used to control the wetting properties of poly(styrene)-block-poly(D,L-lactide) (PS-block-PDLA). Surfaces were modified with a series of cross-linked PS-stat-PMMA-stat-glycidyl methacrylate terpolymers, and the surface chemistries and energies were assessed using angle-dependent X-ray photoelectron spectroscopy and the two-liquid harmonic method, respectively. From these experiments, an expected neutral compositional window was identified for symmetrical PS-block-PDLA. Moreover, high-resolution SEM, AD-XPS, and grazing-incidence SAXS measurements were used to evaluate the morphology of PS-block-PDLA as a function of the surface composition of the underlying cross-linked copolymer films, and the neutral composition was found to range from 32 to 38 mol % of PS, in the bulk polymer. Ultimately, we demonstrated the determination of nonpreferential surface compositions that allow the self-assembly of lamellae with sizes in the sub-10 nm regime that are oriented perpendicular to the substrate. These findings have important implications for the use of PS-block-PDLA block copolymers in directed self-assembly, most specifically in advanced lithographic processes.


Assuntos
Poliésteres/química , Poliestirenos/química , Estrutura Molecular , Poliestirenos/síntese química
13.
Biomacromolecules ; 13(12): 4012-21, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23134321

RESUMO

Hydrogels with tunable degradability have potential uses in a range of applications including drug delivery and tissue scaffolds. A series of poly(ethylene glycol) (PEG) hydrogels and amphiphilic PEG-poly(trimethylene carbonate ) (PTMC) hydrogels were prepared using copper-catalyzed Huisgen's 1,3-dipolar cycloaddition, or "click" chemistry as the coupling chemistry. The fidelity of the coupling chemistry was confirmed using Fourier transform infrared (FTIR) and 1H magic angle spinning (MAS) NMR spectroscopy while thorough swelling and degradation studies of the hydrogels were performed to relate network structure to the physical properties. The cross-linking efficiency calculated using the Flory-Rehner equation varied from 0.90 to 0.99, which indicates that the networks are close to "ideal" at a molecular level. However, at the microscopic level cryogenic scanning electron microscopy (cryo-SEM) indicated that some degree of phase separation was occurring during cross-linking. At 37 °C and pH 7.4, the degradation rate of the hydrogels increased with decreasing cross-link density in the network. Introduction of PTMC as the cross-linker produced an amphiphilic gel with higher cross-link density and a longer degradation time. The degradability of the resultant hydrogels could thus be tuned through control of molecular weight and structure of the precursors.


Assuntos
Química Click , Dioxanos/síntese química , Hidrogéis/síntese química , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis/síntese química , Materiais Biocompatíveis/síntese química , Cromatografia em Gel , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Estrutura Molecular , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Phys Chem Chem Phys ; 14(10): 3604-11, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22314792

RESUMO

Understanding the interactions of small molecules with gold nanoparticles is important for controlling their surface chemistry and, hence, how they can be used in specific applications. The interaction of iodoperfluorobenzene compounds with gold nanoparticles was investigated by UV-Vis difference spectroscopy, surface enhanced Raman spectroscopy (SERS) and Synchrotron X-ray photoelectron spectroscopy (XPS). Results from UV-Vis difference spectroscopy demonstrated that iodoperfluorobenzene compounds undergo charge transfer complexation with gold nanoparticles. SERS of the small molecule-gold nanoparticle adducts provided further evidence for formation of charge transfer complexes, while Synchrotron X-ray photoelectron spectroscopy provided evidence of the binding mechanism. Demonstration of interactions of iodoperfluorobenzene compounds with gold nanoparticles further expands the molecular toolbox that is available for functionalising gold nanoparticles and has significant potential for expanding the scope for generation of hybrid halogen bonded materials.


Assuntos
Fluorbenzenos/química , Ouro/química , Nanopartículas Metálicas/química
15.
ACS Omega ; 7(20): 17119-17127, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35647423

RESUMO

Multidrug resistance (MDR) is a problem that is often associated with a poor clinical outcome in chemotherapeutic cancer treatment. MDR may potentially be overcome by utilizing synergistic approaches, such as combining siRNA gene therapy and chemotherapy to target different mechanisms of apoptosis. In this study, a strategy is presented for developing multicomponent nanomedicines using orthogonal and compatible chemistries that lead to effective nanotherapeutics. Hyperbranched polymers were used as drug carriers that contained doxorubicin (DOX), attached via a pH-sensitive hydrazone linkage, and ataxia-telangiectasia mutated (ATM) siRNA, attached via a redox-sensitive disulfide group. This nanomedicine also contained cyanine 5 (Cy5) as a diagnostic tracer as well as in-house developed bispecific antibodies that allowed targeting of the epidermal growth factor receptor (EGFR) present on tumor tissue. Highly efficient coupling of siRNA was achieved with 80% of thiol end-groups on the hyperbranched polymer coupling with siRNA. This attachment was reversible, with the majority of siRNA released in vitro under reducing conditions as desired. In cellular studies, the nanomedicine exhibited increased DNA damage and cancer cell inhibition compared to the individual treatments. Moreover, the nanomedicine has great potential to suppress the metabolism of cancer cells including both mitochondrial respiration and glycolytic activity, with enhanced efficacy observed when targeted to the cell surface protein EGFR. Our findings indicated that co-delivery of ATM siRNA and DOX serves as a more efficient therapeutic avenue in cancer treatment than delivery of the single species and offers a potential route for synergistically enhanced gene therapy.

16.
Phys Chem Chem Phys ; 13(36): 16444-5; discussion 16446-8, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21842080

RESUMO

An article recently published in this journal claimed that a resonance enhanced light scattering (RELS) peak for 22 nm gold nanoparticles was observed at 653 nm, which was about 130 nm higher than the surface plasmon resonance maximum. They also claimed to observe RELS from dilute solutions of Rhodamine B, under conditions where it is expected to be in its monomeric form. This comment shows that the position of the RELS peak for the gold nanoparticles is an artefact of measurement and the RELS from Rhodamine B is simply fluorescence. These findings are likely to have a significant impact on the interpretation of the results in terms of interactions of dyes with gold nanoparticles as well as aggregation of gold nanoparticles, which has been reported elsewhere by the same authors.

17.
ACS Biomater Sci Eng ; 7(6): 2083-2105, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797239

RESUMO

Poly(aspartic acid) (PASP) is an anionic polypeptide that is a highly versatile, biocompatible, and biodegradable polymer that fulfils key requirements for use in a wide variety of biomedical applications. The derivatives of PASP can be readily tailored via the amine-reactive precursor, poly(succinimide) (PSI), which opens up a large window of opportunity for the design and development of novel biomaterials. PASP also has a strong affinity with calcium ions, resulting in complexation, which has been exploited for bone targeting and biomineralization. In addition, recent studies have further verified the biocompatibility and biodegradability of PASP-based polymers, which is attributed to their protein-like structure. In light of growing interest in PASP and its derivatives, this paper presents a comprehensive review on their synthesis, characterization, modification, biodegradation, biocompatibility, and applications in biomedical areas.


Assuntos
Ácido Aspártico , Peptídeos , Materiais Biocompatíveis , Polimerização
18.
J Am Chem Soc ; 132(15): 5336-7, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20345132

RESUMO

We have demonstrated the design and synthesis of hyperbranched molecules that can be successfully imaged in vivo using (19)F MRI in under 10 min. These polymers are cytocompatible following chain extension with PEGMA. In addition, functionalization of these macromolecules can be achieved in a facile manner and with accessible and correct ligand presentation. Such hyperbranched polymers hold promise as new generation tracking and targeting MRI contrast agents.


Assuntos
Meios de Contraste/síntese química , Flúor , Imageamento por Ressonância Magnética/métodos , Polímeros/síntese química , Animais , Camundongos , Bexiga Urinária/metabolismo
19.
Langmuir ; 26(2): 692-701, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19824687

RESUMO

The interactions of phenyldithioesters with gold nanoparticles (AuNPs) have been studied by monitoring changes in the surface plasmon resonance (SPR), depolarised light scattering, and surface enhanced Raman spectroscopy (SERS). Changes in the SPR indicated that an AuNP-phenyldithioester charge transfer complex forms in equilibrium with free AuNPs and phenyldithioester. Analysis of the Langmuir binding isotherms indicated that the equilibrium adsorption constant, K(ads), was 2.3 +/- 0.1 x 10(6) M(-1), which corresponded to a free energy of adsorption of 36 +/- 1 kJ mol(-1). These values are comparable to those reported for interactions of aryl thiols with gold and are of a similar order of magnitude to moderate hydrogen bonding interactions. This has significant implications in the application of phenyldithioesters for the functionalization of AuNPs. The SERS results indicated that the phenyldithioesters interact with AuNPs through the C=S bond, and the molecules do not disassociate upon adsorption to the AuNPs. The SERS spectra are dominated by the portions of the molecule that dominate the charge transfer complex with the AuNPs. The significance of this in relation to the use of phenyldithioesters for molecular barcoding of nanoparticle assemblies is discussed.


Assuntos
Ésteres/química , Ouro/química , Nanopartículas Metálicas/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Nanotecnologia , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
20.
Langmuir ; 26(15): 12748-54, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20597547

RESUMO

Hydrophobic isoporous membranes were fabricated using the "breath figure" method from polystyrene stars synthesized via ATRP. The living polymer chain ends at the surface of the films were then used, without further modification, in a "grafting-from" approach to grow surface-linked polyglycidyl methacrylate chains under conditions that maintained the regular honeycomb structure. This versatile functional surface was then used as a platform to build a small library of surfaces using a variety of simple chemistries: (i) the acid hydrolysis of the epoxide to form bis-alcohol groups and (ii) utilizing the "click-like" epoxide-amine reaction to functionalize the surface with a model biomolecule-(biotinamido)pentylamine. The successful modifications were confirmed by a combination of spectroscopic and biological means. Changes in the growth characteristics of nonmotile Psychrobacter sp. strain, SW5, on the honeycomb films, provided further evidence confirming changes in the hydrophobicity of the surface upon grafting.


Assuntos
Membranas Artificiais , Cromatografia em Gel , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Poliestirenos/química , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA