Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 57(Pt 3): 831-841, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846765

RESUMO

Recent developments in synchrotron radiation facilities have increased the amount of data generated during acquisitions considerably, requiring fast and efficient data processing techniques. Here, the application of dense neural networks (DNNs) to data treatment of X-ray diffraction computed tomography (XRD-CT) experiments is presented. Processing involves mapping the phases in a tomographic slice by predicting the phase fraction in each individual pixel. DNNs were trained on sets of calculated XRD patterns generated using a Python algorithm developed in-house. An initial Rietveld refinement of the tomographic slice sum pattern provides additional information (peak widths and integrated intensities for each phase) to improve the generation of simulated patterns and make them closer to real data. A grid search was used to optimize the network architecture and demonstrated that a single fully connected dense layer was sufficient to accurately determine phase proportions. This DNN was used on the XRD-CT acquisition of a mock-up and a historical sample of highly heterogeneous multi-layered decoration of a late medieval statue, called 'applied brocade'. The phase maps predicted by the DNN were in good agreement with other methods, such as non-negative matrix factorization and serial Rietveld refinements performed with TOPAS, and outperformed them in terms of speed and efficiency. The method was evaluated by regenerating experimental patterns from predictions and using the R-weighted profile as the agreement factor. This assessment allowed us to confirm the accuracy of the results.

2.
J Appl Crystallogr ; 57(Pt 2): 470-480, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596726

RESUMO

X-ray Laue microdiffraction aims to characterize microstructural and mechanical fields in polycrystalline specimens at the sub-micrometre scale with a strain resolution of ∼10-4. Here, a new and unique Laue microdiffraction setup and alignment procedure is presented, allowing measurements at temperatures as high as 1500 K, with the objective to extend the technique for the study of crystalline phase transitions and associated strain-field evolution that occur at high temperatures. A method is provided to measure the real temperature encountered by the specimen, which can be critical for precise phase-transition studies, as well as a strategy to calibrate the setup geometry to account for the sample and furnace dilation using a standard α-alumina single crystal. A first application to phase transitions in a polycrystalline specimen of pure zirconia is provided as an illustrative example.

3.
Phys Rev Lett ; 111(8): 085501, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010451

RESUMO

Strains strongly affect the properties of low-dimensional materials, such as graphene. By combining in situ, in operando, reflection high-energy electron diffraction experiments with first-principles calculations, we show that large strains, above 2%, are present in graphene during its growth by chemical vapor deposition on Ir(111) and when it is subjected to oxygen etching and ion bombardment. Our results unravel the microscopic relationship between point defects and strains in epitaxial graphene and suggest new avenues for graphene nanostructuring and engineering its properties through introduction of defects and intercalation of atoms and molecules between graphene and its metal substrate.

4.
Int J Biol Macromol ; 245: 125565, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379951

RESUMO

Surface treatment by adhesive polymers is a promising solution to immobilize and study bacteria cells through microscopic assays and, for example, control their growth or determine their susceptibility to antibiotic treatment. The stability of such functional films in wet conditions is crucial, as the film degradation would compromise a persistent use of the coated devices. In this work, low roughness chitosan thin films of degrees of acetylation (DA) ranging from 0.5 % to 49 % were chemically grafted onto silicon and glass substrates and we have demonstrated how the physicochemical properties of the surfaces and the bacterial response were DA-dependent. A fully deacetylated chitosan film presented an anhydrous crystalline structure while the hydrated crystalline allomorph was the preferred structure at higher DA. Moreover, their hydrophilicity increased at higher DA, leading to higher film swelling. Low DA chitosan-grafted substrate favored bacterial growth away from the surface and could be envisioned as bacteriostatic surfaces. Contrarily, an optimum of Escherichia coli adhesion was found for substrates modified with chitosan of DA = 35 %: these surfaces are adapted for the study of bacterial growth and antibiotic testing, with the possibility of reusing the substrates without affecting the grafted film - ideal for limiting single-use devices.


Assuntos
Quitosana , Quitosana/química , Acetilação , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/química
5.
J Appl Crystallogr ; 53(Pt 3): 650-661, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32684880

RESUMO

A furnace that covers the temperature range from room temperature up to 2000 K has been designed, built and implemented on the D2AM beamline at the ESRF. The QMAX furnace is devoted to the full exploration of the reciprocal hemispace located above the sample surface. It is well suited for symmetric and asymmetric 3D reciprocal space mapping. Owing to the hemispherical design of the furnace, 3D grazing-incidence small- and wide-angle scattering and diffraction measurements are possible. Inert and reactive experiments can be performed at atmospheric pressure under controlled gas flux. It is demonstrated that the QMAX furnace allows monitoring of structural phase transitions as well as microstructural evolution at the nanoscale, such as self-organization processes, crystal growth and strain relaxation. A time-resolved in situ oxidation experiment illustrates the capability to probe the high-temperature reactivity of materials.

6.
Beilstein J Nanotechnol ; 7: 1850-1860, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144534

RESUMO

Near the point of equiatomic composition, both FeRh and FeCo bulk alloys exhibit a CsCl-type (B2) chemically ordered phase that is related to specific magnetic properties, namely a metamagnetic anti-ferromagnetic/ferromagnetic transition near room temperature for FeRh and a huge magnetic moment for the FeCo soft alloy. In this paper, we present the magnetic and structural properties of nanoparticles of less than 5 nm diameter embedded in an inert carbon matrix prepared by mass-selected low-energy cluster-beam deposition technique. We obtained a CsCl-type (B2) chemically ordered phase for annealed nanoalloys. Using different experimental measurements, we show how decreasing the size affects the magnetic properties. FeRh nanoparticles keep the ferromagnetic order at low temperature due to surface relaxation affecting the cell parameter. In the case of FeCo clusters, the environment drastically affects the intrinsic properties of this system by reducing the magnetization in comparison to the bulk.

7.
ACS Appl Mater Interfaces ; 7(36): 19906-13, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26315344

RESUMO

In ferroelectric thin films, controlling the orientation of the polarization is a key element to controlling their physical properties. We use laboratory and synchrotron X-ray diffraction to investigate ferroelectric bicolor PbTiO3/PbZr0.2Ti0.8O3 and tricolor PbTiO3/SrTiO3/PbZr0.2Ti0.8O3 superlattices and to study the role of the SrTiO3 layers on the domain structure. In the tricolor superlattices, we demonstrate the existence of 180° ferroelectric stripe nanodomains, induced by the depolarization field produced by the SrTiO3 layers. Each ultrathin SrTiO3 layer modifies the electrostatic boundary conditions between the ferroelectric layers compared to the corresponding bicolor structures, leading to the suppression of the a/c polydomain states. Combined with the electrostatic effect, the tensile strain induced by PbZr0.2Ti0.8O3 in the PbTiO3 layers leads to polarization rotation in the system as evidenced by grazing incidence X-ray measurements. This polarization rotation is associated with the monoclinic Mc phase as revealed by the splitting of the (HHL) and (H0L) reciprocal lattice points. This work demonstrates that the tricolor paraelectric/ferroelectric superlattices constitute a tunable system to investigate the concomitant effects of strains and depolarizing fields. Our studies provide a pathway to stabilize a monoclinic symmetry in ferroelectric layers, which is of particular interest for the enhancement of the piezoelectric properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA