Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ther Drug Monit ; 32(2): 177-84, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20216122

RESUMO

Lamotrigine (LTG) is metabolized by UGT1A4 but UGT2B7 also contributes to its glucuronidation. The aim of this study was to determine whether UGT2B7_- 161C>T and UGT2B7_372A>G polymorphisms contribute to the intersubject variability in LTG concentration-to-dose ratio (LTG-CDR) in epileptic patients. Fifty-three white epileptic patients attending the Neuropediatric and Neurology Services at the Marqués de Valdecilla University Hospital, in whom LTG serum concentration was to be measured for pharmacokinetic monitoring, were selected according to predefined criteria for LTG-CDR evaluation. All patients had at least one steady-state LTG serum concentration obtained before the first dose in the morning. Patients were classified in 3 groups of comedication: (1) LTG in combination with metabolism-inducer anticonvulsants (n = 22), (2) LTG in combination with valproate (n = 13), and (3) LTG as monotherapy (n = 16) or in combination with valproate and inducers (n = 2). Genotypes were determined by Applied Biosystems Genotyping Assays with TaqMan probes. A significant association was found between LTG-CDR and UGT2B7_-161C>T polymorphism (P = 0.021) when patient age and concomitant antiepileptic drugs were taken into account. Comedication explained 70% of the LTG-CDR variability, patient age 24%, and UGT2B7_-161C>T 12%. In contrast, a significant association between LTG-CDR and this polymorphism was not found in the bivariate study when age and comedication groups were not considered. A significant association between UGT2B7_372A>G and LTG-CDR was not found in the bivariate or the multivariate studies. UGT2B7_-161C>T polymorphism is significantly associated with LTG-CDR when comedication with other antiepileptic drugs and patient age are taken into account in a multivariate analysis.


Assuntos
Glucuronosiltransferase/genética , Polimorfismo de Nucleotídeo Único/genética , Triazinas/administração & dosagem , Triazinas/sangue , Adolescente , Adulto , Criança , Pré-Escolar , Citosina , Relação Dose-Resposta a Droga , Feminino , Humanos , Lamotrigina , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Timina , Adulto Jovem
2.
J Antibiot (Tokyo) ; 70(4): 404-413, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27731336

RESUMO

Antibiotic A201A produced by Saccharothrix mutabilis subsp. capreolus NRRL3817 contains an aminonucleoside (N6, N6-dimethyl-3'-amino-3'-deoxyadenosyl), a polyketide (α-methyl-p-coumaric acid) and a disaccharide moiety. The heterologous expression in Streptomyces lividans and Streptomyces coelicolor of a S. mutabilis genomic region of ~34 kb results in the production of A201A, which was identified by microbiological, biochemical and physicochemical approaches, and indicating that this region may contain the entire A201A biosynthetic gene cluster (ata). The analysis of the nucleotide sequence of the fragment reveals the presence of 32 putative open reading frames (ORF), 28 of which according to boundary gene inactivation experiments are likely to be sufficient for A201A biosynthesis. Most of these ORFs could be assigned to the biosynthesis of the antibiotic three structural moieties. Indeed, five ORFs had been previously implicated in the biosynthesis of the aminonucleoside moiety, at least nine were related to the biosynthesis of the polyketide (ata-PKS1-ataPKS4, ata18, ata19, ata2, ata4 and ata7) and six were associated with the synthesis of the disaccharide (ata12, ata13, ata16, ata17, ata5 and ata10) moieties. In addition to AtaP5, three putative methyltransferase genes are also found in the ata cluster (Ata6, Ata8 and Ata11), and no regulatory genes were found.


Assuntos
Actinomycetales/genética , Aminoglicosídeos/biossíntese , Aminoglicosídeos/genética , Antibacterianos/biossíntese , Família Multigênica/genética , Sequência de Aminoácidos , Sequência de Bases , Biologia Computacional , Dissacarídeos/biossíntese , Dissacarídeos/genética , Marcação de Genes , Metiltransferases/genética , Oligonucleotídeos/química , Plasmídeos , Policetídeos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA