RESUMO
Language learning is influenced by both neural development and environmental experiences. This work investigates the influence of early bilingual experience on the neural mechanisms underlying speech processing in 4-month-old infants. We study how an early environmental factor such as bilingualism interacts with neural development by comparing monolingual and bilingual infants' brain responses to speech. We used functional near-infrared spectroscopy (fNIRS) to measure 4-month-old Spanish-Basque bilingual and Spanish monolingual infants' brain responses while they listened to forward (FW) and backward (BW) speech stimuli in Spanish. We reveal distinct neural signatures associated with bilingual adaptations, including increased engagement of bilateral inferior frontal and temporal regions during speech processing in bilingual infants, as opposed to left hemispheric functional specialization observed in monolingual infants. This study provides compelling evidence of bilingualism-induced brain adaptations during speech processing in infants as young as 4 months. These findings emphasize the role of early language experience in shaping neural plasticity during infancy suggesting that bilingual exposure at this young age profoundly influences the neural mechanisms underlying speech processing.
RESUMO
Studies of cortical function in newborn infants in clinical settings are extremely challenging to undertake with traditional neuroimaging approaches. Partly in response to this challenge, functional near-infrared spectroscopy (fNIRS) has become an increasingly common clinical research tool but has significant limitations including a low spatial resolution and poor depth specificity. Moreover, the bulky optical fibres required in traditional fNIRS approaches present significant mechanical challenges, particularly for the study of vulnerable newborn infants. A new generation of wearable, modular, high-density diffuse optical tomography (HD-DOT) technologies has recently emerged that overcomes many of the limitations of traditional, fibre-based and low-density fNIRS measurements. Driven by the development of this new technology, we have undertaken the first cot-side study of newborn infants using wearable HD-DOT in a clinical setting. We use this technology to study functional brain connectivity (FC) in newborn infants during sleep and assess the effect of neonatal sleep states, active sleep (AS) and quiet sleep (QS), on resting state FC. Our results demonstrate that it is now possible to obtain high-quality functional images of the neonatal brain in the clinical setting with few constraints. Our results also suggest that sleep states differentially affect FC in the neonatal brain, consistent with prior reports.
Assuntos
Mapeamento Encefálico , Tomografia Óptica , Recém-Nascido , Humanos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cabeça , Tomografia Óptica/métodos , SonoRESUMO
BACKGROUND: When characterizing the brain's resting state functional connectivity (RSFC) networks, demonstrating networks' similarity across sessions and reliability across different scan durations is essential for validating results and possibly minimizing the scanning time needed to obtain stable measures of RSFC. Recent advances in optical functional neuroimaging technologies have resulted in fully wearable devices that may serve as a complimentary tool to functional magnetic resonance imaging (fMRI) and allow for investigations of RSFC networks repeatedly and easily in non-traditional scanning environments. METHODS: Resting-state cortical hemodynamic activity was repeatedly measured in a single individual in the home environment during COVID-19 lockdown conditions using the first ever application of a 24-module (72 sources, 96 detectors) wearable high-density diffuse optical tomography (HD-DOT) system. Twelve-minute recordings of resting-state data were acquired over the pre-frontal and occipital regions in fourteen experimental sessions over three weeks. As an initial validation of the data, spatial independent component analysis was used to identify RSFC networks. Reliability and similarity scores were computed using metrics adapted from the fMRI literature. RESULTS: We observed RSFC networks over visual regions (visual peripheral, visual central networks) and higher-order association regions (control, salience and default mode network), consistent with previous fMRI literature. High similarity was observed across testing sessions and across chromophores (oxygenated and deoxygenated haemoglobin, HbO and HbR) for all functional networks, and for each network considered separately. Stable reliability values (described here as a <10% change between time windows) were obtained for HbO and HbR with differences in required scanning time observed on a network-by-network basis. DISCUSSION: Using RSFC data from a highly sampled individual, the present work demonstrates that wearable HD-DOT can be used to obtain RSFC measurements with high similarity across imaging sessions and reliability across recording durations in the home environment. Wearable HD-DOT may serve as a complimentary tool to fMRI for studying RSFC networks outside of the traditional scanning environment and in vulnerable populations for whom fMRI is not feasible.
Assuntos
COVID-19 , Tomografia Óptica , Humanos , Mapeamento Encefálico/métodos , Reprodutibilidade dos Testes , Controle de Doenças Transmissíveis , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Descanso , Rede Nervosa/diagnóstico por imagemRESUMO
Autism spectrum disorders (ASD) and attention-deficit hyperactivity disorder (ADHD) are highly prevalent neurodevelopmental conditions that often co-occur and present both common and distinct neurodevelopmental profiles. Studying the developmental pathways leading to the emergence of ASD and/or ADHD symptomatology is crucial in understanding neurodiversity and discovering the mechanisms that underpin it. This study used functional near-infrared spectroscopy (fNIRS) to investigate differences in cortical specialization to social stimuli between 4- to 6-month-old infants at typical and elevated likelihood of ASD and/or ADHD. Results showed that infants at both elevated likelihood of ASD and ADHD had reduced selectivity to vocal sounds in left middle and superior temporal gyrus. Furthermore, infants at elevated likelihood of ASD showed attenuated responses to visual social stimuli in several cortical regions compared to infants at typical likelihood. Individual brain responses to visual social stimuli were associated with later autism traits, but not ADHD traits. These outcomes support our previous observations showing atypical social brain responses in infants at elevated likelihood of ASD and align with later atypical brain responses to social stimuli observed in children and adults with ASD. These findings highlight the importance of characterizing antecedent biomarkers of atypicalities in processing socially relevant information that might contribute to both phenotypic overlap and divergence across ASD and ADHD conditions and their association with the later emergence of behavioural symptoms.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Criança , Lactente , Adulto , Humanos , Estudos Prospectivos , Encéfalo , Lobo TemporalRESUMO
Spontaneous, task-free, hemodynamic activity of the brain provides useful information about its functional organization, as it can describe how different brain regions communicate to each other. Neuroimaging studies measuring the spontaneous activity of the brain are conducted while the participants are not engaged in a particular task or receiving any external stimulation. This approach is particularly useful in developmental populations as brain activity can be measured without the need for infant compliance and the risks of data contamination due to motion artifacts. In this project we sought to i) characterize the intrinsic functional organization of the brain in 4-month-old infants and ii) investigate whether bilingualism, as a specific environmental factor, could lead to adaptations on functional brain network development at this early age. Measures of spontaneous hemodynamic activity were acquired in 4-month-old infants (n = 104) during natural sleep using functional near-infrared spectroscopy (fNIRS). Emphasis was placed on acquiring high-quality data that could lead to reproducible results and serve as a valuable resource for researchers investigating the developing functional connectome.
Assuntos
Hemodinâmica , Sono , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Hemodinâmica/fisiologia , Humanos , Lactente , Sono/fisiologia , Espectroscopia de Luz Próxima ao InfravermelhoRESUMO
Significance: Early monolingual versus bilingual experience induces adaptations in the development of linguistic and cognitive processes, and it modulates functional activation patterns during the first months of life. Resting-state functional connectivity (RSFC) is a convenient approach to study the functional organization of the infant brain. RSFC can be measured in infants during natural sleep, and it allows to simultaneously investigate various functional systems. Adaptations have been observed in RSFC due to a lifelong bilingual experience. Investigating whether bilingualism-induced adaptations in RSFC begin to emerge early in development has important implications for our understanding of how the infant brain's organization can be shaped by early environmental factors. Aims: We attempt to describe RSFC using functional near-infrared spectroscopy (fNIRS) and to examine whether it adapts to early monolingual versus bilingual environments. We also present an fNIRS data preprocessing and analysis pipeline that can be used to reliably characterize RSFC in development and to reduce false positives and flawed results interpretations. Methods: We measured spontaneous hemodynamic brain activity in a large cohort ( N = 99 ) of 4-month-old monolingual and bilingual infants using fNIRS. We implemented group-level approaches based on independent component analysis to examine RSFC, while providing proper control for physiological confounds and multiple comparisons. Results: At the group level, we describe the functional organization of the 4-month-old infant brain in large-scale cortical networks. Unbiased group-level comparisons revealed no differences in RSFC between monolingual and bilingual infants at this age. Conclusions: High-quality fNIRS data provide a means to reliably describe RSFC patterns in the infant brain. The proposed group-level RSFC analyses allow to assess differences in RSFC across experimental conditions. An effect of early bilingual experience in RSFC was not observed, suggesting that adaptations might only emerge during explicit linguistic tasks, or at a later point in development.
RESUMO
The spontaneous cerebral activity that gives rise to resting-state networks (RSNs) has been extensively studied in infants in recent years. However, the influence of sleep state on the presence of observable RSNs has yet to be formally investigated in the infant population, despite evidence that sleep modulates resting-state functional connectivity in adults. This effect could be extremely important, as most infant neuroimaging studies rely on the neonate to remain asleep throughout data acquisition. In this study, we combine functional near-infrared spectroscopy with electroencephalography to simultaneously monitor sleep state and investigate RSNs in a cohort of healthy term born neonates. During active sleep (AS) and quiet sleep (QS) our newborn neonates show functional connectivity patterns spatially consistent with previously reported RSN structures. Our three independent functional connectivity analyses revealed stronger interhemispheric connectivity during AS than during QS. In turn, within hemisphere short-range functional connectivity seems to be enhanced during QS. These findings underline the importance of sleep state monitoring in the investigation of RSNs.
RESUMO
Near-infrared spectroscopy (NIRS) offers the potential to characterize resting-state functional connectivity (RSFC) in populations that are not easily assessed otherwise, such as young infants. In addition to the advantages of NIRS, one should also consider that the RS-NIRS signal requires specific data preprocessing and analysis. In particular, the RS-NIRS signal shows a colored frequency spectrum, which can be observed as temporal autocorrelation, thereby introducing spurious correlations. To address this issue, prewhitening of the RS-NIRS signal has been recently proposed as a necessary step to remove the signal temporal autocorrelation and therefore reduce false-discovery rates. However, the impact of this step on the analysis of experimental RS-NIRS data has not been thoroughly assessed prior to the present study. Here, the results of a standard preprocessing pipeline in a RS-NIRS dataset acquired in infants are compared with the results after incorporating two different prewhitening algorithms. Our results with a standard preprocessing replicated previous studies. Prewhitening altered RSFC patterns and disrupted the antiphase relationship between oxyhemoglobin and deoxyhemoglobin. We conclude that a better understanding of the effect of prewhitening on RS-NIRS data is still needed before directly considering its incorporation to the standard preprocessing pipeline.