Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
BMC Microbiol ; 22(1): 209, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042402

RESUMO

BACKGROUND: Maternally inherited bacterial symbionts are extremely widespread in insects. They owe their success to their ability to promote their own transmission through various manipulations of their hosts' life-histories. Many symbionts however very often go undetected. Consequently, we have only a restricted idea of the true symbiont diversity in insects, which may hinder our understanding of even bigger questions in the field such as the evolution or establishment of symbiosis. RESULTS: In this study, we screened publicly available Lepidoptera genomic material for two of the most common insect endosymbionts, namely Wolbachia and Spiroplasma, in 1904 entries, encompassing 106 distinct species. We compared the performance of two screening software, Kraken2 and MetaPhlAn2, to identify the bacterial infections and using a baiting approach we reconstruct endosymbiont genome assemblies. Of the 106 species screened, 20 (19%) and nine (8.5%) were found to be infected with either Wolbachia or Spiroplasma, respectively. Construction of partial symbiotic genomes and phylogenetic analyses suggested the Wolbachia strains from the supergroup B were the most prevalent type of symbionts, while Spiroplasma infections were scarce in the Lepidoptera species screened here. CONCLUSIONS: Our results indicate that many of the host-symbiont associations remain largely unexplored, with the majority of associations we identify never being recorded before. This highlights the usefulness of public databases to explore the hidden diversity of symbiotic entities, allowing the development of hypotheses regarding host-symbiont associations. The ever-expanding genomic databases provide a diverse databank from which one can characterize and explore the true diversity of symbiotic entities.


Assuntos
Lepidópteros , Spiroplasma , Wolbachia , Animais , Filogenia , Spiroplasma/genética , Simbiose/genética , Wolbachia/genética
2.
Plant J ; 97(2): 306-320, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30288820

RESUMO

Calamine accessions of the zinc/cadmium/nickel hyperaccumulator, Noccaea caerulescens, exhibit striking variation in foliar cadmium accumulation in nature. The Ganges accession (GA) from Southern France displays foliar cadmium hyperaccumulation (>1000 µg g-1 DW), whereas the accession La Calamine (LC) from Belgium, with similar local soil metal composition, does not (<100 µg g-1 DW). All calamine accessions are cadmium hypertolerant. To find out the differences between LC and GA in their basic adaptation mechanisms, we bypassed the cadmium excluding phenotype of LC by exposing the plants to 50 µm cadmium in hydroponics, achieving equal cadmium accumulation in the shoots. The iron content increased in the roots of both accessions. GA exhibited significant decreases in manganese and zinc contents in the roots and shoots, approaching those in LC. Altogether 702 genes responded differently to cadmium exposure between the accessions, 157 and 545 in the roots and shoots, respectively. Cadmium-exposed LC showed a stress response and had decreased levels of a wide range of photosynthesis-related transcripts. GA showed less changes, mainly exhibiting an iron deficiency-like response. This included increased expression of genes encoding five iron deficiency-regulated bHLH transcription factors, ferric reduction oxidase FRO2, iron transporters IRT1 and OPT3, and nicotianamine synthase NAS1, and decreased expression of genes encoding ferritins and NEET (a NEET family iron-sulfur protein), which is possibly involved in iron transfer, distribution and/or management. The function of the IRT1 gene in the accessions was compared. We conclude that the major difference between the two accessions is in the way they cope with iron under cadmium exposure.


Assuntos
Brassicaceae/genética , Cádmio/metabolismo , Ferro/metabolismo , Transcriptoma , Brassicaceae/fisiologia , Produtos Agrícolas , Homeostase , Hidroponia , Deficiências de Ferro , Metais/metabolismo , Fotossíntese/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , RNA-Seq , Thlaspi/genética , Thlaspi/fisiologia , Zinco/metabolismo
3.
Phytopathology ; 109(5): 726-735, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30412010

RESUMO

The phytopathogen Phytophthora cactorum infects economically important herbaceous and woody plant species. P. cactorum isolates differ in host specificity; for example, strawberry crown rot is often caused by a specialized pathotype. Here we compared the transcriptomes of two P. cactorum isolates that differ in their virulence to garden strawberry (Pc407: high virulence; Pc440: low virulence). De novo transcriptome assembly and clustering of contigs resulted in 19,372 gene clusters. Two days after inoculation of Fragaria vesca roots, 3,995 genes were differently expressed between the P. cactorum isolates. One of the genes that were highly expressed only in Pc407 encodes a GAF sensor protein potentially involved in membrane trafficking processes. Two days after inoculation, elicitins were highly expressed in Pc407 and lipid catabolism appeared to be more active than in Pc440. Of the carbohydrate-active enzymes, those that degrade pectin were often more highly expressed in Pc440, whereas members of glycosyl hydrolase family 1, potentially involved in the metabolism of glycosylated secondary metabolites, were more highly expressed in Pc407 at the time point studied. Differences were also observed among the RXLR effectors: Pc407 appears to rely on a smaller set of key RXLR effectors, whereas Pc440 expresses a greater number of RXLRs. This study is the first step toward improving understanding of the molecular basis of differences in the virulence of P. cactorum isolates. Identification of the key effectors is important, as it enables effector-assisted breeding strategies toward crown rot-resistant strawberry cultivars.


Assuntos
Fragaria/microbiologia , Phytophthora/classificação , Doenças das Plantas/microbiologia , Transcriptoma , Carboidratos , Metabolismo dos Lipídeos , Phytophthora/enzimologia , Phytophthora/patogenicidade , Metabolismo Secundário , Virulência
4.
Environ Sci Technol ; 48(6): 3344-53, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24559272

RESUMO

Populations of Noccaea caerulescens show tremendous differences in their capacity to hyperaccumulate and hypertolerate metals. To explore the differences that could contribute to these traits, we undertook SOLiD high-throughput sequencing of the root transcriptomes of three phenotypically well-characterized N. caerulescens accessions, i.e., Ganges, La Calamine, and Monte Prinzera. Genes with possible contribution to zinc, cadmium, and nickel hyperaccumulation and hypertolerance were predicted. The most significant differences between the accessions were related to metal ion (di-, trivalent inorganic cation) transmembrane transporter activity, iron and calcium ion binding, (inorganic) anion transmembrane transporter activity, and antioxidant activity. Analysis of correlation between the expression profile of each gene and the metal-related characteristics of the accessions disclosed both previously characterized (HMA4, HMA3) and new candidate genes (e.g., for nickel IRT1, ZIP10, and PDF2.3) as possible contributors to the hyperaccumulation/tolerance phenotype. A number of unknown Noccaea-specific transcripts also showed correlation with Zn(2+), Cd(2+), or Ni(2+) hyperaccumulation/tolerance. This study shows that N. caerulescens populations have evolved great diversity in the expression of metal-related genes, facilitating adaptation to various metalliferous soils. The information will be helpful in the development of improved plants for metal phytoremediation.


Assuntos
Brassicaceae/genética , Brassicaceae/metabolismo , Metais Pesados/metabolismo , Transcriptoma/genética , Biodegradação Ambiental , Ecótipo , Perfilação da Expressão Gênica , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poluentes do Solo/metabolismo
5.
Microbiol Resour Announc ; 11(6): e0030522, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575493

RESUMO

Here, we announce the draft genome sequence of Lactiplantibacillus plantarum isolated from corn silage in Nicholasville, KY. L. plantarum IMI 507026 is deposited in the Centre for Agriculture and Bioscience International (CABI) Culture Collection with the accession number IMI 507026.

6.
Data Brief ; 42: 108190, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35515993

RESUMO

Here, we report the genome sequencing data for the fermented milk isolate, Lactiplantibacillus plantarum (L. plantarum) IMI 507028. The Bioproject, SRA, and GenBank data were deposited at NCBI under accession numbers PRJNA801616, SRR18323693, and JAKMAX000000000, respectively. The size of the genome was 3,231,321 bp, with a GC% of 44.52. Before sequence trimming, the genome contained 40 contigs, in which 35 contigs were annotated, revealing 2937 coding sequences out of 3052 total genes. The strain was identified as L. plantarum with an average nucleotide identity (ANI) value of 99.9922% between IMI 507028 and L. plantarum JDM1. Genes related to antimicrobial resistance or pathogenic factors were not found during screening.

7.
Microbiol Resour Announc ; 11(4): e0121621, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35343777

RESUMO

We report here the draft genome sequence of Pediococcus pentosaceus strain IMI 507024, a lactic acid bacterium isolated from fermented sausage in Kentucky (Nicholasville, KY, USA). The strain is deposited in the Centre for Agriculture and Bioscience International (CABI) Culture Collection with the accession number IMI 507024.

8.
Microbiol Resour Announc ; 11(5): e0121721, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35389246

RESUMO

We report here the draft genome sequence of Lacticaseibacillus rhamnosus strain IMI 507023, a lactic acid bacterium, isolated from corn silage in Nicholasville, Kentucky, USA. The strain is deposited in the Centre for Agriculture and Bioscience International (CABI) Culture Collection with the accession number IMI 507023.

9.
Data Brief ; 42: 108025, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35310818

RESUMO

Here we report the draft genome sequence of the Lactiplantibacillus plantarum IMI 507027 strain. The genome consists of 37 contigs with a total size of 3,235,614 bp and a GC% of 44.51. After sequence trimming, 31 contigs were annotated, revealing 3,126 genes, of which 3,030 were coding sequences. The Average Nucleotide Identity (ANI) gave a value of 99.9926% between IMI 507027 and L. plantarum JDM1, identifying the strain as L. plantarum. No genes of concern for safety-related traits such as antimicrobial resistance or virulence factors were found. The annotated genome and raw sequence reads were deposited at NCBI under Bioproject with the accession number PRJNA791753.

10.
Data Brief ; 43: 108446, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35864877

RESUMO

The genome sequence data for the pickled cucumbers isolate, Pediococcus pentosaceus IMI 507025, is reported. The raw reads and analysed genome reads were deposited at NCBI under Bioproject with the accession number PRJNA814992. The number of contigs before and after trimming were 17 and 12 contigs, respectively. The total size of the genome was 1,795,439 bp containing 1,811 total genes, of which 1,751 were coding sequences. IMI 507025 identity was determined via average nucleotide identity (ANI), obtaining an identity value of 99.5994% between IMI 507025 and the type strain P. pentosaceus ATCC 33316, identifying the strain as P. pentosaceus. Screening for the antimicrobial resistance (AMR) and virulence genes in the genome of IMI 507025 showed no hits, confirming the safety of the tested strain. Presence of plasmids was not found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA