Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proteomics ; 18(11): e1700390, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603667

RESUMO

For rational design of therapeutic vaccines, detailed knowledge about target epitopes that are endogenously processed and truly presented on infected or transformed cells is essential. Many potential target epitopes (viral or mutation-derived), are presented at low abundance. Therefore, direct detection of these peptides remains a challenge. This study presents a method for the isolation and LC-MS3 -based targeted detection of low-abundant human leukocyte antigen (HLA) class-I-presented peptides from transformed cells. Human papillomavirus (HPV) was used as a model system, as the HPV oncoproteins E6 and E7 are attractive therapeutic vaccination targets and expressed in all transformed cells, but present at low abundance due to viral immune evasion mechanisms. The presented approach included preselection of target antigen-derived peptides by in silico predictions and in vitro binding assays. The peptide purification process was tailored to minimize contaminants after immunoprecipitation of HLA-peptide complexes, while keeping high isolation yields of low-abundant target peptides. The subsequent targeted LC-MS3 detection allowed for increased sensitivity, which resulted in successful detection of the known HLA-A2-restricted epitope E711-19 and ten additional E7-derived peptides on the surface of HPV16-transformed cells. T-cell reactivity was shown for all the 11 detected peptides in ELISpot assays, which shows that detection by our approach has high predictive value for immunogenicity. The presented strategy is suitable for validating even low-abundant candidate epitopes to be true immunotherapy targets.


Assuntos
Cromatografia Líquida/métodos , Epitopos de Linfócito T/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Papillomaviridae/imunologia , Fragmentos de Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Neoplasias do Colo do Útero/metabolismo , Epitopos de Linfócito T/imunologia , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia
2.
PLoS Pathog ; 12(12): e1006072, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977791

RESUMO

Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Epitopos Imunodominantes/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/metabolismo , Cromatografia Líquida , Epitopos de Linfócito T/imunologia , Citometria de Fluxo , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Espectrometria de Massas , Camundongos , Muromegalovirus/imunologia , Mutagênese Sítio-Dirigida , Peptídeos , Vacinas Sintéticas/imunologia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
3.
J Virol ; 90(19): 8605-20, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440904

RESUMO

UNLABELLED: Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. IMPORTANCE: The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA molecules in the human population, it is critical for vaccine design to identify HIV peptides that may be displayed despite the HLA diversity. We identified 107 HIV peptides directly from the surface of three cell types infected with HIV. They corresponded to nested sets of HIV peptides of canonical and novel noncanonical lengths not predictable by the presence of HLA anchors. Importantly, we identified areas of HIV proteins leading to presentation of noncanonical peptides by several cell types with distinct HLAs. Including such peptides in vaccine immunogen may help to focus immune responses on common markers of HIV infection in the context of HLA diversity.


Assuntos
Apresentação de Antígeno , Epitopos de Linfócito T/imunologia , Antígenos HIV/análise , HIV/imunologia , Antígenos de Histocompatibilidade/química , Peptídeos/análise , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Células Epiteliais/imunologia , Humanos
4.
Open Biol ; 13(2): 220220, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809799

RESUMO

CK2 is a Ser/Thr protein kinase composed of two catalytic (α/α') subunits and a non-catalytic ß-subunit dimer, whose activity is often abnormally high in cancer cells. The concept that CK2 may be dispensable for cell survival has been challenged by the finding that viable CK2α/α' knock-out myoblast clones still express small amounts of an N-terminally deleted α' subunit generated during the CRISPR/Cas9 procedure. Here we show that, although the overall CK2 activity of these CK2α(-/-)/Δα' (KO) cells is less than 10% compared to wild-type (WT) cells, the number of phosphosites with the CK2 consensus is comparable to that of WT cells. A more in-depth analysis, however, reveals that the two phosphoproteomes are not superimposable according to a number of criteria, notably a functional analysis of the phosphoproteome found in the two types of cells, and variable sensitivity of the phosphosites to two structurally unrelated CK2 inhibitors. These data support the idea that a minimal CK2 activity, as in KO cells, is sufficient to perform basic housekeeping functions essential for cell survival, but not to accomplish several specialized tasks required upon cell differentiation and transformation. From this standpoint, a controlled downregulation of CK2 would represent a safe and valuable anti-cancer strategy.


Assuntos
Caseína Quinase II , Mioblastos , Caseína Quinase II/metabolismo , Linhagem Celular , Mioblastos/metabolismo
5.
Cell Rep ; 42(3): 112262, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943866

RESUMO

The African trypanosome survives the immune response of its mammalian host by antigenic variation of its major surface antigen (the variant surface glycoprotein or VSG). Here we describe the antibody repertoires elicited by different VSGs. We show that the repertoires are highly restricted and are directed predominantly to distinct epitopes on the surface of the VSGs. They are also highly discriminatory; minor alterations within these exposed epitopes confer antigenically distinct properties to these VSGs and elicit different repertoires. We propose that the patterned and repetitive nature of the VSG coat focuses host immunity to a restricted set of immunodominant epitopes per VSG, eliciting a highly stereotyped response, minimizing cross-reactivity between different VSGs and facilitating prolonged immune evasion through epitope variation.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Animais , Epitopos Imunodominantes , Evasão da Resposta Imune , Glicoproteínas Variantes de Superfície de Trypanosoma , Variação Antigênica , Epitopos , Mamíferos
6.
Eur J Med Chem ; 214: 113217, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548633

RESUMO

CK2 (an acronym derived from the misnomer "casein kinase 2") denotes a ubiquitous, highly pleiotropic protein kinase which has been implicated in global human pathologies, with special reference to cancer. A large spectrum of fairly selective, cell permeable CK2 inhibitors are available, one of which, CX4945 is already in clinical trials for the treatment of neoplasia. Another recently developed CK2 inhibitor, GO289, displays in vitro potency and selectivity comparable to CX4945. Here the cellular efficiency of these two inhibitors has been evaluated by treating C2C12 myoblasts for 5 h with each of them at 4 µM concentration and running a quantitative phosphoproteomics analysis of phosphosites affected by the two compounds. A small but significant proportion of the quantified phosphosites is decreased by treatment with CX4945 and, even more with GO289. This figure substantially increases if a subset of quantified phosphosites conforming to the CK2 consensus (pS/pT-x-x-D/E/pS/pT) is considered. Also in this case GO289 is more effective than CX4945. By adopting stringent criteria two shortlists of 70 and 35 sites whose phosphorylation is decreased >50% by GO289 and CX4945, respectively, have been generated. All these phosphosites conform to the consensus of CK2 with just sporadic exceptions. Their WebLogos are indistinguishable from that of bona fide CK2 phosphosites and their Two-Sample Logos rule out any significant contribution of Pro-directed and basophilic protein kinases to their generation. To sum up, we can conclude that by treating C2C12 cells for 5 h with either CX4945 or GO289 off-target effects are negligible since almost all the phosphosites undergoing a substantial reduction are attributable to CK2, with a higher inhibitory efficacy displayed by GO289. CX4945 and GO289 provide highly selective tools to control the CK2-dependent phosphoproteome compared with previously developed CK2 inhibitors.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Naftiridinas/farmacologia , Fenazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Animais , Caseína Quinase II/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Naftiridinas/química , Fenazinas/química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
7.
Front Immunol ; 11: 1172, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595640

RESUMO

Piperlongumine (PL), a natural small molecule derived from the Piper longum Linn plant, has received growing interest as a prooxidative drug with promising anticancer properties. Yet, the influence of PL on primary human T cells remained elusive. Knowledge of this is of crucial importance, however, since T cells in particular play a critical role in tumor control. Therefore, we investigated the effects of PL on the survival and function of primary human peripheral blood T cells (PBTs). While PL was not cytotoxic to PBTs, it interfered with several stages of T cell activation as it inhibited T cell/APC immune synapse formation, co-stimulation-induced upregulation of CD69 and CD25, T cell proliferation and the secretion of proinflammatory cytokines. PL-induced immune suppression was prevented in the presence of thiol-containing antioxidants. In line with this finding, PL increased the levels of intracellular reactive oxygen species and decreased glutathione in PBTs. Diminished intracellular glutathione was accompanied by a decrease in S-glutathionylation on actin suggesting a global alteration of the antioxidant response. Gene expression analysis demonstrated that TH17-related genes were predominantly inhibited by PL. Consistently, the polarization of primary human naïve CD4+ T cells into TH17 subsets was significantly diminished while differentiation into Treg cells was substantially increased upon PL treatment. This opposed consequence for TH17 and Treg cells was again abolished by thiol-containing antioxidants. Taken together, PL may act as a promising agent for therapeutic immunosuppression by exerting prooxidative effects in human T cells resulting in a diminished TH17 but enhanced Treg cell differentiation.


Assuntos
Diferenciação Celular/efeitos da radiação , Dioxolanos/farmacologia , Imunossupressores/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
8.
Cancer Immunol Res ; 7(5): 719-736, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30902818

RESUMO

Knowing whether a protein can be processed and the resulting peptides presented by major histocompatibility complex (MHC) is highly important for immunotherapy design. MHC ligands can be predicted by in silico peptide-MHC class-I binding prediction algorithms. However, prediction performance differs considerably, depending on the selected algorithm, MHC class-I type, and peptide length. We evaluated the prediction performance of 13 algorithms based on binding affinity data of 8- to 11-mer peptides derived from the HPV16 E6 and E7 proteins to the most prevalent human leukocyte antigen (HLA) types. Peptides from high to low predicted binding likelihood were synthesized, and their HLA binding was experimentally verified by in vitro competitive binding assays. Based on the actual binding capacity of the peptides, the performance of prediction algorithms was analyzed by calculating receiver operating characteristics (ROC) and the area under the curve (AROC). No algorithm outperformed others, but different algorithms predicted best for particular HLA types and peptide lengths. The sensitivity, specificity, and accuracy of decision thresholds were calculated. Commonly used decision thresholds yielded only 40% sensitivity. To increase sensitivity, optimal thresholds were calculated, validated, and compared. In order to make maximal use of prediction algorithms available online, we developed MHCcombine, a web application that allows simultaneous querying and output combination of up to 13 prediction algorithms. Taken together, we provide here an evaluation of peptide-MHC class-I binding prediction tools and recommendations to increase prediction sensitivity to extend the number of potential epitopes applicable as targets for immunotherapy.


Assuntos
Algoritmos , Epitopos de Linfócito T/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Humanos , Ligantes , Ligação Proteica
9.
Oncoimmunology ; 8(3): 1553478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723585

RESUMO

Cancer-associated mutations, mostly single nucleotide variations, can act as neoepitopes and prime targets for effective anti-cancer T-cell immunity. T cells recognizing cancer mutations are critical for the clinical activity of immune checkpoint blockade (ICB) and they are potent vaccine antigens. High frequencies of mutation-specific T cells are rarely spontaneously induced. Hence, therapies that broaden the tumor specific T-cell response are of interest. Here, we analyzed neoepitope-specific CD8+ T-cell responses mounted either spontaneously or after immunotherapy regimens, which induce local tumor inflammation and cell death, in mice bearing tumors of the widely used colon carcinoma cell line CT26. A comprehensive immune reactivity screening of 2474 peptides covering 628 transcribed CT26 point mutations was conducted. All tested treatment regimens were found to induce a single significant CD8+ T-cell response against a non-synonymous D733A point mutation in the Smc3 gene. Surprisingly, even though Smc3 D733A turned out to be the immune-dominant neoepitope in CT26 tumor bearing mice, neither T cells specific for this neoepitope nor their T cell receptors (TCRs) were able to recognize or lyse tumor cells. Moreover, vaccination with the D733A neoepitope did not result in anti-tumoral activity despite induction of specific T cells. This is to our knowledge the first report that neoepitope specific CD8+ T cells primed by tumor-released antigen exposure in vivo can be functionally irrelevant.

10.
Oncoimmunology ; 6(7): e1336594, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28811980

RESUMO

Immune evasion of tumors poses a major challenge for immunotherapy. For human papillomavirus (HPV)-induced malignancies, multiple immune evasion mechanisms have been described, including altered expression of antigen processing machinery (APM) components. These changes can directly influence epitope presentation and thus T-cell responses against tumor cells. To date, the APM had not been studied systematically in a large array of HPV+ tumor samples. Therefore in this study, systematic expression analysis of the APM was performed on the mRNA and protein level in a comprehensive collection of HPV16+ cell lines. Subsequently, HPV+ cervical tissue samples were examined by immunohistochemistry. ERAP1 (endoplasmic reticulum aminopeptidase 1) was the only APM component consistently altered - namely overexpressed - in HPV16+ tumor cell lines. ERAP1 was also found to be overexpressed in cervical intraepithelial neoplasia and cervical cancer samples; expression levels were increasing with disease stage. On the functional level, the influence of ERAP1 expression levels on HPV16 E7-derived epitope presentation was investigated by mass spectrometry and in cytotoxicity assays with HPV16-specific T-cell lines. ERAP1 overexpression did not cause a complete destruction of any of the HPV epitopes analyzed, however, an influence of ERAP1 overexpression on the presentation levels of certain HPV epitopes could be demonstrated by HPV16-specific CD8+ T-cells. These showed enhanced killing toward HPV16+ CaSki cells whose ERAP1 expression had been attenuated to normal levels. ERAP1 overexpression may thus represent a novel immune evasion mechanism in HPV-induced malignancies, in cases when presentation of clinically relevant epitopes is reduced by overactivity of this peptidase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA