Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Ann Bot ; 133(4): 573-584, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38310542

RESUMO

BACKGROUND: Rare earth elements (REEs) are increasingly crucial for modern technologies. Plants could be used as a biogeochemical pathfinder and a tool to extract REEs from deposits. However, a paucity of information on suitable plants for these tasks exists. METHODS: We aimed to discover new REE-(hyper)accumulating plant species by performing an X-ray fluorescence (XRF) survey at the Herbarium of the Muséum national d'Histoire naturelle (MNHN, Paris, France). We selected specific families based on the likelihood of containing REE-hyperaccumulating species, using known taxa that accumulate REEs. A total of 4425 specimens, taken in the two main evolutionary lineages of extant vascular plants, were analysed, including the two fern families Blechnaceae (n = 561) and Gleicheniaceae (n = 1310), and the two flowering plant families Phytolaccaceae (n = 1137) and Juglandaceae (n = 1417). KEY RESULTS: Yttrium (Y) was used as a proxy for REEs for methodological reasons, and a total of 268 specimens belonging to the genera Blechnopsis (n = 149), Dicranopteris (n = 75), Gleichenella (n = 32), Phytolacca (n = 6), Carya (n = 4), Juglans (n = 1) and Sticherus (n = 1) were identified with Y concentrations ranging from the limit of detection (LOD) >49 µg g-1 up to 1424 µg g-1. Subsequently, analysis of fragments of selected specimens by inductively coupled plasma atomic emission spectroscopy (ICP-AES) revealed that this translated to up to 6423 µg total REEs g-1 in Dicranopteris linearis and up to 4278 µg total REEs g-1 in Blechnopsis orientalis which are among the highest values ever recorded for REE hyperaccumulation in plants. It also proved the validity of Y as an indicator for REEs in XRF analysis of herbarium specimens. The presence of manganese (Mn) and zinc (Zn) was also studied by XRF in the selected specimens. Mn was detected in 1440 specimens ranging from the detection limit at 116 µg g-1 up to 3807 µg g-1 whilst Zn was detected in 345 specimens ranging from the detection limit at 77 µg g-1 up to 938 µg g-1. CONCLUSIONS AND IMPLICATIONS: This study led to the discovery of REE accumulation in a range of plant species, substantially higher concentrations in species known to be REE hyperaccumulators, and records of REE hyperaccumulators outside of the well-studied populations in China.


Assuntos
Metais Terras Raras , Espectrometria por Raios X , Metais Terras Raras/metabolismo , Metais Terras Raras/análise , Espectrometria por Raios X/métodos , Paris , Gleiquênias/metabolismo , Gleiquênias/química
2.
Environ Sci Technol ; 57(7): 2768-2778, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752569

RESUMO

Rare earth elements (REEs) are strategic metals strongly involved in low-carbon energy conversion. However, these emerging contaminants are increasingly disseminated into ecosystems, raising concern regarding their toxicity. REE-accumulating plants are crucial subjects to better understand REE transfer to the trophic chain but are also promising phytoremediation tools. In this analysis, we deciphered REE accumulation sites in the REE-accumulating fern Dryopteris erythrosora by synchrotron X-ray µfluorescence (µXRF). This technique allows a high-resolution and in situ analysis of fresh samples or frozen-hydrated cross sections of different organs of the plant. In the sporophyte, REEs were translocated from the roots to the fronds by the xylem sap and were stored within the xylem conductive system. The comparison of REE distribution and accumulation levels in the healthy and necrotic parts of the frond shed light on the differential mobility between light and heavy REEs. Furthermore, the comparison emphasized that necrotized areas were not the main REE-accumulating sites. Finally, the absence of cell-to-cell mobility of REEs in the gametophyte suggested the absence of REE-compatible transporters in photosynthetic tissues. These results provide valuable knowledge on the physiology of REE-accumulating ferns to understand the REE cycle in biological systems and the expansion of phytotechnologies for REE-enriched or REE-contaminated soils.


Assuntos
Dryopteris , Gleiquênias , Metais Terras Raras , Humanos , Ecossistema , Poluição Ambiental/análise
3.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682588

RESUMO

Microbial populations associated to poplar are well described in non-contaminated and metal-contaminated environments but more poorly in the context of polycyclic aromatic hydrocarbon (PAH) contamination. This study aimed to understand how a gradient of phenanthrene (PHE) contamination affects poplar growth and the fungal microbiome in both soil and plant endosphere (roots, stems and leaves). Plant growth and fitness parameters indicated that the growth of Populus canadensis was impaired when PHE concentration increased above 400 mg kg-1. Values of alpha-diversity indicators of fungal diversity and richness were not affected by the PHE gradient. The PHE contamination had a stronger impact on the fungal community composition in the soil and root compartments compared to that of the aboveground organs. Most of the indicator species whose relative abundance was correlated with PHE contamination decreased along the gradient indicating a toxic effect of PHE on these fungal OTUs (Operational Taxonomic Units). However, the relative abundance of some OTUs such as Cadophora, Alternaria and Aspergillus, potentially linked to PHE degradation or being plant-beneficial taxa, increased along the gradient. Finally, this study allowed a deeper understanding of the dual response of plant and fungal communities in the case of a soil PAH contamination gradient leading to new perspectives on fungal assisted phytoremediation.


Assuntos
Micobioma , Hidrocarbonetos Policíclicos Aromáticos , Populus , Poluentes do Solo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Populus/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
4.
Mycorrhiza ; 28(3): 301-314, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29502186

RESUMO

The presence of dark septate endophytes (DSEs) or arbuscular mycorrhizal fungi (AMF) in plant roots and their effects on plant fitness have been extensively described. However, little is known about their interactions when they are simultaneously colonizing a plant root, especially in trace element (TE)-polluted soils. We therefore investigated the effects of Cadophora sp. and Funneliformis mosseae on ryegrass (Lolium perenne) growth and element uptake in a Cd/Zn/Pb-polluted soil. The experiment included four treatments, i.e., inoculation with Cadophora sp., inoculation with F. mosseae, co-inoculation with Cadophora sp. and F. mosseae, and no inoculation. Ryegrass biomass and shoot Na, P, K, and Mg concentrations significantly increased following AMF inoculation as compared to non-inoculated controls. Similarly, DSE inoculation increased shoot Na concentration, whereas dual inoculation significantly decreased shoot Cd concentration. Moreover, oxidative stress determined by ryegrass leaf malondialdehyde concentration was alleviated both in the AMF and dual inoculation treatments. We used quantitative PCR and microscope observations to quantify colonization rates. They demonstrated that DSEs had no effect on AMF colonization, while AMF colonization slightly decreased DSE frequency. We also monitored fluorescein diacetate (FDA) hydrolysis and alkaline phosphatase (AP) activity in the rhizosphere soils. FDA hydrolysis remained unchanged in the three inoculated treatments, but AMF colonization increased AP activity and P mobility in the soil whereas DSE colonization did not alter AP activity. In this experiment, we unveiled the interactions between two ecologically important fungal groups likely to occur in roots which involved a decrease of oxidative stress and Cd accumulation in shoots. These results open promising perspectives on the fungal-based phytomanagement of TE-contaminated sites by the production of uncontaminated and marketable plant biomass.


Assuntos
Ascomicetos/fisiologia , Endófitos/fisiologia , Glomeromycota/fisiologia , Lolium/microbiologia , Micorrizas/fisiologia , Microbiologia do Solo , França , Lolium/metabolismo , Poluentes do Solo/metabolismo , Oligoelementos/metabolismo
5.
Int J Phytoremediation ; 19(12): 1118-1125, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-28521510

RESUMO

Dark septate endophytes (DSEs) are abundant in stressful environments, including trace element (TE)-enriched soils. However, knowledge about the effects of DSEs on plant growth in such soils is poor compared to the well-known mycorrhizal fungi. The aim of this work was to evaluate the effects of three DSE strains isolated from TE-contaminated soils on the growth and mineral nutrition of Betula pendula and Populus tremula x alba grown on two contrasting TE-polluted soils. The three DSEs evenly colonized the two plant species in both soils. Nevertheless, plant responses to DSE inoculation varied from neutral to beneficial depending on soil properties. Depending on fungal strain and plant species, different factors seemed to contribute to plant growth promotion. Phialophora mustea Pr27 and Leptodontidium Pr30 decreased lipid peroxidation in birch shoots. Chlorophyll, K, and P concentrations increased in the shoots of Leptodontidium Pr30-inoculated trees, whereas Cd concentration decreased in Cadophora Fe06-inoculated birch. The absence of a general DSE-mediated plant growth-promoting behavior could represent a limiting factor for a generic use of DSEs in the tree-based phytomanagement of TE-contaminated soils. Our results suggest that the selection of strains adapted to particular edaphic conditions should not be overlooked within the framework of phytomanagement.


Assuntos
Endófitos , Populus , Poluentes do Solo , Ascomicetos , Betula , Biodegradação Ambiental , Micorrizas , Desenvolvimento Vegetal , Populus/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Oligoelementos
6.
Mycorrhiza ; 26(7): 657-71, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27113586

RESUMO

This study aimed to isolate, identify, and characterise metal-tolerant fungi colonising poplar roots at a metal-contaminated phytoremediation site. Poplar roots were colonised by arbuscular mycorrhizal, ectomycorrhizal, and endophytic fungi, and the species were determined by ITS molecular analyses. Eight different isolates were successfully isolated into pure culture. Three isolates belonging to the Helotiales (P02, P06) and the Serendipita vermifera species (P04) were highly tolerant to metals (Cd, Zn, Pb, and Cu) compared to the mycorrhizal Hebeloma isolates. The three isolates degraded complex carbohydrates, such as xylan and cellulose, indicating that they could partially degrade root cell walls and penetrate into cells. This hypothesis was confirmed by further in vitro re-synthesis experiments, which showed that the three isolates colonised root tissues of poplar plantlets whereas two of them formed microsclerotia-like structures. Taken together, these results suggest an endophytic lifestyle of these isolates. This is the first evidence of S. vermifera as a root endophyte of poplar. A new endophytic putative species belonging to the Helotiales and closely related to Leohumicola is also reported. Interestingly, and when compared to mock-inoculated plants, both P06 and P04 isolates increased the number of root tips of inoculated poplar plantlets in vitro. Moreover, the S. vermifera P04 isolate also increased the shoot biomass. The results are discussed in relation to the potential use of endophytic strains for tree-based phytoremediation of metal-contaminated sites.


Assuntos
Metais/toxicidade , Micorrizas/isolamento & purificação , Raízes de Plantas/microbiologia , Populus/microbiologia , Simbiose/fisiologia , Biodegradação Ambiental , DNA Fúngico/genética , DNA Intergênico/genética , Micorrizas/classificação , Micorrizas/genética , Filogenia , Poluentes do Solo/toxicidade
7.
Metallomics ; 16(1)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38142127

RESUMO

The increasing use of lithium (Li) in new technologies raises the question of its impact on living microorganisms. In the present study, we aimed to identify putative Li targets and resistance mechanisms in the yeast model Saccharomyces cerevisiae using a deletomic approach based on the screening of a collection of 4733 knockout mutants under Li exposure. This screening highlighted 60 mutants resistant to Li and 124 mutants sensitive to Li. Through functional enrichment analyses, transport systems were identified as playing a central role in cell resistance to toxic concentrations of Li. In contrast, the AKT/protein kinase B family, signal transduction or cell communication were identified as potential toxic targets of Li. The majority of the mutants with a Li-sensitive phenotype were also sensitive to other alkali and alkaline earth metals, whereas the Li-resistance phenotype was mostly resistant to Na but poorly resistant to other metals. A comparison with the results of deletomics studies carried out in the presence of other metals highlighted Li-specific phenotypes. Three genes (NAM7, NMD2, UPF3) of the nonsense-mediated decay pathway were specifically involved in resistance to Li. In contrast, mutants with the NCA2, SPT20, GCN5, YOR376W, YPK3, and DCW1 genes deleted were specifically resistant to Li. These genes encode various functions from putative mannosidase to constitution of the Spt-Ada-Gcn5 acetyltransferase complex. This work provides a better understanding of potential specific resistance mechanisms and cellular targets of Li in yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Lítio/farmacologia , Lítio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fenótipo , Transdução de Sinais , RNA Helicases/genética , RNA Helicases/metabolismo
8.
J Hazard Mater ; 468: 133701, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364576

RESUMO

Rare earth elements (REEs) are crucial elements for current high-technology and renewable energy advances. In addition to their increasing usage and their low recyclability leading to their release into the environment, REEs are also used as crop fertilizers. However, little is known regarding the cellular and molecular effects of REEs in plants, which is crucial for better risk assessment, crop safety and phytoremediation. Here, we analysed the ionome and transcriptomic response of Arabidopsis thaliana exposed to a light (lanthanum, La) and a heavy (ytterbium, Yb) REE. At the transcriptome level, we observed the contribution of ROS and auxin redistribution to the modified root architecture following REE exposure. We found indications for the perturbation of Fe homeostasis by REEs in both roots and leaves of Arabidopsis suggesting competition between REEs and Fe. Furthermore, we propose putative ways of entry of REEs inside cells through transporters of microelements. Finally, similar to REE accumulating species, organic acid homeostasis (e.g. malate and citrate) appears critical as a tolerance mechanism in response to REEs. By combining ionomics and transcriptomics, we elucidated essential patterns of REE uptake and toxicity response of Arabidopsis and provide new hypotheses for a better evaluation of the impact of REEs on plant homeostasis.


Assuntos
Arabidopsis , Metais Terras Raras , Arabidopsis/genética , Metais Terras Raras/toxicidade , Lantânio , Plantas , Homeostase
9.
Mycology ; 15(2): 255-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813472

RESUMO

High-throughput sequencing has become a prominent tool to assess plant-associated microbial diversity. Still, some technical challenges remain in characterising these communities, notably due to plant and fungal DNA co-amplification. Fungal-specific primers, Peptide Nucleic Acid (PNA) clamps, or adjusting PCR conditions are approaches to limit plant DNA contamination. However, a systematic comparison of these factors and their interactions, which could limit plant DNA contamination in the study of plant mycobiota, is still lacking. Here, three primers targeting the ITS2 region were evaluated alone or in combination with PNA clamps both on nettle (Urtica dioica) root DNA and a mock community. PNA clamps did not improve the richness or diversity of the fungal communities but increased the number of fungal reads. Among the tested factors, the most significant was the primer pair. Specifically, the 5.8S-Fun/ITS4-Fun pair exhibited a higher OTU richness but fewer fungal reads. Our study demonstrates that the choice of primers is critical for limiting plant and fungal DNA co-amplification. PNA clamps increase the number of fungal reads when ITS2 is targeted but do not result in higher fungal diversity recovery at high sequencing depth. At lower read depths, PNA clamps might enhance microbial diversity quantification for primer pairs lacking fungal specificity.

10.
Sci Total Environ ; 912: 168600, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981137

RESUMO

Soil microbial communities play a key role in plant nutrition and stress tolerance. This is particularly true in sites contaminated by trace metals, which often have low fertility and stressful conditions for woody plants in particular. However, we have limited knowledge of the abiotic and biotic factors affecting the richness and composition of microbial communities inhabiting the rhizosphere of plants in contaminated sites. Using high-throughput amplicon sequencing, we studied the rhizospheric bacterial and fungal community structures of 14 woody plant families planted in three contrasting sites contaminated by metals (Pb, Cd, Zn, Mn, Fe, S). The rhizospheric bacterial communities in the given sites showed no significant difference between the various woody species but did differ significantly between sites. The Proteobacteria phylum was dominant, accounting for over 25 % of the overall relative abundance, followed by Actinobacteria, Bacteroidetes and Gemmatimonadetes. Site was also the main driver of fungal community composition, yet unlike bacteria, tree species identity significantly affected fungal communities. The Betulaceae, Salicaceae and Fagaceae families had a high proportion of Basidiomycota, particularly ectomycorrhizal fungi, and the lowest diversity and richness. The other tree families and the unplanted soil harboured a greater abundance of Ascomycota and Mucoromycota. Consequently, for both bacteria and fungi, the site effect significantly impacted their community richness and composition, while the influence of plants on the richness and composition of rhizospheric microbial communities stayed consistent across sites and was dependent on the microbial kingdom. Finally, we highlighted the importance of considering this contrasting response of plant rhizospheric microbial communities in relation to their host identity, particularly to improve assisted revegetation efforts at contaminated sites.


Assuntos
Micobioma , Micorrizas , Oligoelementos , Árvores , Bactérias , Fungos , Plantas , Solo/química , Microbiologia do Solo
11.
Environ Microbiol ; 15(10): 2829-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23663419

RESUMO

Heavy metals are pollutants which affect all organisms. Since a small number of eukaryotes have been investigated with respect to metal resistance, we hypothesize that many genes that control this phenomenon remain to be identified. This was tested by screening soil eukaryotic metatranscriptomes which encompass RNA from organisms belonging to the main eukaryotic phyla. Soil-extracted polyadenylated mRNAs were converted into cDNAs and 35 of them were selected for their ability to rescue the metal (Cd or Zn) sensitive phenotype of yeast mutants. Few of the genes belonged to families known to confer metal resistance when overexpressed in yeast. Several of them were homologous to genes that had not been studied in the context of metal resistance. For instance, the BOLA ones, which conferred cross metal (Zn, Co, Cd, Mn) resistance may act by interfering with Fe homeostasis. Other genes, such as those encoding 110- to 130-amino-acid-long, cysteine-rich polypeptides, had no homologues in databases. This study confirms that functional metatranscriptomics represents a powerful approach to address basic biological processes in eukaryotes. The selected genes can be used to probe new pathways involved in metal homeostasis and to manipulate the resistance level of selected organisms.


Assuntos
Resistência a Medicamentos/genética , Eucariotos/efeitos dos fármacos , Eucariotos/genética , Metais Pesados/farmacologia , Microbiologia do Solo , Poluentes do Solo/farmacologia , Leveduras/genética , Perfilação da Expressão Gênica , Biblioteca Gênica , Variação Genética , Metais Pesados/metabolismo , Dados de Sequência Molecular , Poluentes do Solo/metabolismo , Leveduras/efeitos dos fármacos
12.
Fungal Genet Biol ; 52: 53-64, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23232015

RESUMO

Two full-length cDNAs (OmZnT1 and OmFET) encoding membrane transporters were identified by yeast functional screening in the heavy metal tolerant ericoid mycorrhizal isolate Oidiodendron maius Zn. OmZnT1 belongs to the Zn-Type subfamily of the cation diffusion facilitators, whereas OmFET belongs to the family of iron permeases. Their properties were investigated in yeast by functional complementation of mutants affected in metal uptake and metal tolerance. Heterologous expression of OmZnT1 and OmFET in a Zn-sensitive yeast mutant restored the wild-type phenotype. Additionally, OmZnT1 expression also restored cobalt tolerance in a Co-sensitive mutant. A GFP fusion protein revealed that OmZnT1 was targeted to the endoplasmic reticulum membrane, a result consistent with a function for OmZnT1 in metal sequestration. Similarly to other iron permeases, OmFET-GFP was localized on the plasma membrane. OmFET restored the growth of uptake-defective strains for iron and zinc. Zinc-sensitive yeast mutants expressing OmFET specifically accumulated magnesium, as compared to cells transformed with the empty vector. We suggest that OmFET may counteract zinc toxicity by increasing entry of magnesium into the cell.


Assuntos
Ascomicetos/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Intoxicação , Zinco/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Intoxicação por Metais Pesados , Ferro/metabolismo , Proteínas de Membrana Transportadoras/genética , Zinco/química
13.
Microorganisms ; 11(8)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630673

RESUMO

Among the rare earth elements (REEs), a crucial group of metals for high-technologies. Gadolinium (Gd) is the only REE intentionally injected to human patients. The use of Gd-based contrasting agents for magnetic resonance imaging (MRI) is the primary route for Gd direct exposure and accumulation in humans. Consequently, aquatic environments are increasingly exposed to Gd due to its excretion through the urinary tract of patients following an MRI examination. The increasing number of reports mentioning Gd toxicity, notably originating from medical applications of Gd, necessitates an improved risk-benefit assessment of Gd utilizations. To go beyond toxicological studies, unravelling the mechanistic impact of Gd on humans and the ecosystem requires the use of genome-wide approaches. We used functional deletomics, a robust method relying on the screening of a knock-out mutant library of Saccharomyces cerevisiae exposed to toxic concentrations of Gd. The analysis of Gd-resistant and -sensitive mutants highlighted the cell wall, endosomes and the vacuolar compartment as cellular hotspots involved in the Gd response. Furthermore, we identified endocytosis and vesicular trafficking pathways (ESCRT) as well as sphingolipids homeostasis as playing pivotal roles mediating Gd toxicity. Finally, tens of yeast genes with human orthologs linked to renal dysfunction were identified as Gd-responsive. Therefore, the molecular and cellular pathways involved in Gd toxicity and detoxification uncovered in this study underline the pleotropic consequences of the increasing exposure to this strategic metal.

14.
Sci Total Environ ; 887: 164131, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37182771

RESUMO

The seed microbiota is currently of great interest in the scientific community since seed germination is a critical stage in plant life cycle. Some seed endophytic bacteria could be commonly found in seeds of hyperaccumulating plants and may confer them an evolutionary advantage over non-hyperaccumulating plants when confronted to biotic or abiotic stress. This study focuses on the endophytic bacterial diversity of a wide diversity of metal hyperaccumulating and non-hyperaccumulating plants (93 seed samples from Mediterranean regions, Oceania, South-East Asia) to reveal the core endophyte communities specific of hyperaccumulating plants. The rather low richness of the seed bacterial communities found in all seeds suggest that a sub-population of specialized endophytic strains is able to colonize seeds and survive. The factor that shapes the diversity of those bacterial communities was first the botanical family and secondly the hyperaccumulation trait of the host plants. Based on the taxonomic affiliation, we revealed that the Brassicales had 1349 OTUs that were specific to them and the Asterales 204 OTUs, independently of their metal accumulation strategy. Nonetheless, a set of 12 OTUs were shared by the seeds of all the hyperaccumulators independently of the taxonomic order of the plants (among Asterales and Brassicales) and could be considered as a 'stable' core microbiome. Those OTUs identified as Luteibacter, Alphaproteobacteria unclassified, Sphingopyxis, Alishewanella, bacteria unclassified, Heliimonas, Aeromicrobium, Proteobacteria unclassified, Xanthomonadales unclassified and Micromonosporaceae unclassified may constitute an endophytic bacterial core with PGP traits. Further studies are needed to extend our knowledge of the possible role played by those bacteria.


Assuntos
Microbiota , Sementes , Bactérias , Plantas , Proteobactérias
15.
Front Microbiol ; 14: 1124879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415811

RESUMO

Fungal endophytes can improve plant tolerance to abiotic stress conditions. Dark septate endophytes (DSEs) belong to phylogenetically non-related groups of root colonizing fungi among the Ascomycota with high melanin-producing activities. They can be isolated from roots of more than 600 plant species in diverse ecosystems. Still the knowledge about their interaction with host plants and their contribution to stress alleviation is limited. The current work aimed to test the abilities of three DSEs (Periconia macrospinosa, Cadophora sp., Leptodontidium sp.) to alleviate moderate and high salt stress in tomato plants. By including an albino mutant, the role of melanin for the interaction with plants and salt stress alleviation could also be tested. P. macrospinosa and Cadophora sp. improved shoot and root growth 6 weeks after inoculation under moderate and high salt stress conditions. No matter how much salt stress was applied, macroelement (P, N, and C) contents were unaffected by DSE inoculation. The four tested DSE strains successfully colonized the roots of tomato, but the colonization level was clearly reduced in the albino mutant of Leptodontidium sp. Any difference in the effects on plant growth between the Leptodontidium sp. wild type strain and the albino mutant could, however, not be observed. These results show that particular DSEs are able to increase salt tolerance as they promote plant growth specifically under stress condition. Increased plant biomasses combined with stable nutrient contents resulted in higher P uptake in shoots of inoculated plants at moderate and high salt conditions and higher N uptake in the absence of salt stress in all inoculated plants, in P. macrospinosa-inoculated plants at moderate salt condition and in all inoculated plants except the albino mutants at high salt condition. In summary, melanin in DSEs seems to be important for the colonization process, but does not influence growth, nutrient uptake or salt tolerance of plants.

16.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204041

RESUMO

Polycyclic aromatic hydrocarbon (PAH) contamination of industrial wasteland soils affects microbial diversity, but little is known about the dose-response effects of such contaminants on taxonomic and functional diversities of rhizospheric and plant endophytic bacteria. This study focused on the response of soil and root bacterial communities associated to poplar grown in a contamination gradient of phenanthrene (PHE). It was hypothesized that the increase in contamination would modify gradually the bacterial diversity and functions. The effects of the PHE contamination were limited to soil communities and did not affect the poplar root endophytome where Streptomyces and Cutibacterium were the most abundant genera. Along the PHE gradient, alpha-diversity indices decreased and the community structure of soil bacteria at the taxonomic level shifted. The abundance of genes involved in PAH-degradation pathways and the relative proportion of certain microbial taxa such as Polaromonas, Sphingopyxis, Peredibacter, Phenylobacterium, Ramlibacter, Sphingomonas, and Pseudomonas, often described as potential PAH biodegraders, increased with the PHE concentration in the soil community. Conversely, the contamination negatively impacted other taxa like Nocardioides, Streptomyces, Gaiella, Solirubrobacter, Bradyrhizobium, and Nitrospira. Functional inference and enzymatic activity measurements revealed that some bacterial functions related to carbon, nitrogen and phosphorus cycles were modified in soil throughout the PHE gradient. This study allowed a deeper understanding of the complex plant-bacteria interactions in the case of soil PAH contamination and the potential impact on soil functioning.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo/química , Poluentes do Solo/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias/metabolismo
17.
Metallomics ; 15(9)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37591604

RESUMO

Synchrotron-based micro-X-ray fluorescence analysis (µXRF) is a nondestructive and highly sensitive technique. However, element mapping of rare earth elements (REEs) under standard conditions requires care, since energy-dispersive detectors are not able to differentiate accurately between REEs L-shell X-ray emission lines overlapping with K-shell X-ray emission lines of common transition elements of high concentrations. We aim to test REE element mapping with high-energy interference-free excitation of the REE K-lines on hyperaccumulator plant tissues and compare with measurements with REE L-shell excitation at the microprobe experiment of beamline P06 (PETRA III, DESY). A combination of compound refractive lens optics (CRLs) was used to obtain a micrometer-sized focused incident beam with an energy of 44 keV and an extra-thick silicon drift detector optimized for high-energy X-ray detection to detect the K-lines of yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) without any interferences due to line overlaps. High-energy excitation from La to Nd in the hyperaccumulator organs was successful but compared to L-line excitation less efficient and therefore slow (∼10-fold slower than similar maps at lower incident energy) due to lower flux and detection efficiency. However, REE K-lines do not suffer significantly from self-absorption, which makes XRF tomography of millimeter-sized frozen-hydrated plant samples possible. The K-line excitation of REEs at the P06 CRL setup has scope for application in samples that are particularly prone to REE interfering elements, such as soil samples with high concomitant Ti, Cr, Fe, Mn, and Ni concentrations.


Assuntos
Cério , Síncrotrons , Raios X , Lantânio , Microscopia de Fluorescência
18.
Plant Physiol ; 156(4): 2141-54, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21705655

RESUMO

Gene networks involved in inorganic phosphate (Pi) acquisition and homeostasis in woody perennial species able to form mycorrhizal symbioses are poorly known. Here, we describe the features of the 12 genes coding for Pi transporters of the Pht1 family in poplar (Populus trichocarpa). Individual Pht1 transporters play distinct roles in acquiring and translocating Pi in different tissues of mycorrhizal and nonmycorrhizal poplar during different growth conditions and developmental stages. Pi starvation triggered the up-regulation of most members of the Pht1 family, especially PtPT9 and PtPT11. PtPT9 and PtPT12 showed a striking up-regulation in ectomycorrhizas and endomycorrhizas, whereas PtPT1 and PtPT11 were strongly down-regulated. PtPT10 transcripts were highly abundant in arbuscular mycorrhiza (AM) roots only. PtPT8 and PtPT10 are phylogenetically associated to the AM-inducible Pht1 subfamily I. The analysis of promoter sequences revealed conserved motifs similar to other AM-inducible orthologs in PtPT10 only. To gain more insight into gene regulatory mechanisms governing the AM symbiosis in woody plant species, the activation of the poplar PtPT10 promoter was investigated and detected in AM of potato (Solanum tuberosum) roots. These results indicated that the regulation of AM-inducible Pi transporter genes is conserved between perennial woody and herbaceous plant species. Moreover, poplar has developed an alternative Pi uptake pathway distinct from AM plants, allowing ectomycorrhizal poplar to recruit PtPT9 and PtPT12 to cope with limiting Pi concentrations in forest soils.


Assuntos
Perfilação da Expressão Gênica , Família Multigênica/genética , Micorrizas/fisiologia , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/genética , Populus/genética , Populus/microbiologia , Contagem de Colônia Microbiana , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Genótipo , Glomeromycota/efeitos dos fármacos , Glomeromycota/crescimento & desenvolvimento , Glomeromycota/fisiologia , Glucuronidase/metabolismo , Anotação de Sequência Molecular , Micorrizas/efeitos dos fármacos , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/farmacologia , Filogenia , Plantas Geneticamente Modificadas , Populus/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
19.
Environ Sci Technol ; 46(24): 13361-9, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23153074

RESUMO

We investigated the fate of trace elements (TE) in poplar wood on the conversion of biomass to heat in a 0.2 MW combustion unit equipped with a fabric filter. The phytoremediation wood was harvested from a TE-contaminated agricultural site planted with a high-density poplar stand. The combustion technology used in the present experiment allows for an efficient separation of the various ash fractions. The combustion process concentrates Cu, Cr, and Ni in the bottom ash, heat exchanger ash, and cyclone ash fractions. Therefore, the impact of the fabric filter is negligible for these elements. Conversely, Cd, Pb, and Zn are significantly recovered in the emission fraction in the absence of the fabric filter above the emission limits. The use of a fabric filter will allow the concentration of these three TEs in the ashes collected below the filter, thus complying with all regulatory thresholds, i.e., those from the large combustion plant EU directive. Because the TE concentrations in the different fractions differed significantly, it is recommended that these fractions be treated separately, especially when recycling of ashes from phytoremediation wood through application in agriculture is envisaged.


Assuntos
Temperatura Alta , Oligoelementos/análise , Madeira/química , Poluentes Atmosféricos/análise , Biodegradação Ambiental , Biomassa , Cinza de Carvão/análise , Poeira/análise , Populus/química
20.
J Hazard Mater ; 425: 127830, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34896703

RESUMO

The rapid development of green energy sources and new medical technologies contributes to the increased exploitation of rare earth elements (REEs). They can be subdivided into light (LREEs) and heavy (HREEs) REEs. Mining, industrial processing, and end-use practices of REEs has led to elevated environmental concentrations and raises concerns about their toxicity to organisms and their impact on ecosystems. REE toxicity has been reported, but its precise underlying molecular effects have not been well described. Here, transcriptomic and proteomic approaches were combined to decipher the molecular responses of the model organism Saccharomyces cerevisiae to La (LREE) and Yb (HREE). Differences were observed between the early and late responses to La and Yb. Several crucial pathways were modulated in response to both REEs, such as oxidative-reduction processes, DNA replication, and carbohydrate metabolism. REE-specific responses involving the cell wall and pheromone signalling pathways were identified, and these responses have not been reported for other metals. REE exposure also modified the expression and abundance of several ion transport systems, with strong discrepancies between La and Yb. These findings are valuable for prioritizing key genes and proteins involved in La and Yb detoxification mechanisms that deserve further characterization to better understand REE environmental and human health toxicity.


Assuntos
Metais Terras Raras , Saccharomyces cerevisiae , Ecossistema , Humanos , Metais Terras Raras/toxicidade , Mineração , Proteômica , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA