Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ecol ; 30(2): 608-624, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226678

RESUMO

Invasive pathogens can be a threat when they affect human health, food production or ecosystem services, by displacing resident species, and we need to understand the cause of their establishment. We studied the patterns and causes of the establishment of the pathogen Dickeya solani that recently invaded potato agrosystems in Europe by assessing its invasion dynamics and its competitive ability against the closely related resident D. dianthicola species. Epidemiological records over one decade in France revealed the establishment of D. solani and the maintenance of the resident D. dianthicola in potato fields exhibiting blackleg symptoms. Using experimentations, we showed that D. dianthicola caused a higher symptom incidence on aerial parts of potato plants than D. solani, while D. solani was more aggressive on tubers (i.e. with more severe symptoms). In co-infection assays, D. dianthicola outcompeted D. solani in aerial parts, while the two species co-existed in tubers. A comparison of 76 D. solani genomes (56 of which have been sequenced here) revealed balanced frequencies of two previously uncharacterized alleles, VfmBPro and VfmBSer , at the vfmB virulence gene. Experimental inoculations showed that the VfmBSer population was more aggressive on tubers, while the VfmBPro population outcompeted the VfmBSer population in stem lesions, suggesting an important role of the vfmB virulence gene in the ecology of the pathogens. This study thus brings novel insights allowing a better understanding of the pattern and causes of the D.solani invasion into potato production agrosystems, and the reasons why the endemic D. dianthicola nevertheless persisted.


Assuntos
Dickeya/patogenicidade , Doenças das Plantas/microbiologia , Solanum tuberosum , Ecossistema , Europa (Continente) , França , Solanum tuberosum/microbiologia
2.
Environ Microbiol ; 21(3): 1004-1018, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30618082

RESUMO

Blackleg and soft rot are devastating diseases on potato stem and tuber caused by Pectobacterium and Dickeya pectinolytic enterobacteria. In European potato cultures, D. dianthicola and D. solani species successively emerged in the past decades. Ecological traits associated to their settlement remain elusive, especially in the case of the recent invader D. solani. In this work, we combined genomic, metabolic and transcriptomic comparisons to unravel common and distinctive genetic and functional characteristics between two D. solani and D. dianthicola isolates. The two strains differ by more than a thousand genes that are often clustered in genomic regions (GRs). Several GRs code for transport and metabolism functions that correlate with some of the differences in metabolic abilities identified between the two Dickeya strains. About 800 D. dianthicola and 1100 D. solani genes where differentially expressed in macerated potato tubers as compared to when growing in rich medium. These include several genes located in GRs, pointing to a potential role in host interaction. In addition, some genes common to both species, including virulence genes, differed in their expression. This work highlighted distinctive traits when D. dianthicola and D. solani exploit the host as a resource.


Assuntos
Adaptação Fisiológica , Gammaproteobacteria/fisiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Dickeya , Gammaproteobacteria/patogenicidade , Fenótipo , Tubérculos/microbiologia , Virulência
3.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902863

RESUMO

Members of the genus Burkholderia colonize diverse ecological niches. Among the plant-associated strains, Paraburkholderia phytofirmans PsJN is an endophyte with a broad host range. In a spatially structured environment (unshaken broth cultures), biofilm-constructing specialists of P. phytofirmans PsJN colonizing the air-liquid interface arose at high frequency. In addition to forming a robust biofilm in vitro and in planta on Arabidopsis roots, those mucoid phenotypic variants display a reduced swimming ability and modulate the expression of several microbe-associated molecular patterns (MAMPs), including exopolysaccharides (EPS), flagellin, and GroEL. Interestingly, the variants induce low PR1 and PDF1.2 expression compared to that of the parental strain, suggesting a possible evasion of plant host immunity. We further demonstrated that switching from the planktonic to the sessile form did not involve quorum-sensing genes but arose from spontaneous mutations in two genes belonging to an iron-sulfur cluster: hscA (encoding a cochaperone protein) and iscS (encoding a cysteine desulfurase). A mutational approach validated the implication of these two genes in the appearance of variants. We showed for the first time that in a heterogeneous environment, P. phytofirmans strain PsJN is able to rapidly diversify and coexpress a variant that outcompete the wild-type form in free-living and static conditions but not in plantaIMPORTANCEParaburkholderia phytofirmans strain PsJN is a well-studied plant-associated bacterium known to induce resistance against biotic and abiotic stresses. In this work, we described the spontaneous appearance of mucoid variants in PsJN from static cultures. We showed that the conversion from the wild-type (WT) form to variants (V) correlates with an overproduction of EPS, an enhanced ability to form biofilm in vitro and in planta, and a reduced swimming motility. Our results revealed also that these phenotypes are in part associated with spontaneous mutations in an iron-sulfur cluster. Overall, the data provided here allow a better understanding of the adaptive mechanisms likely developed by P. phytofirmans PsJN in a heterogeneous environment.


Assuntos
Biofilmes/crescimento & desenvolvimento , Burkholderiaceae/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Burkholderiaceae/citologia , Burkholderiaceae/genética , Burkholderiaceae/crescimento & desenvolvimento , Liases de Carbono-Enxofre , Defensinas/metabolismo , Proteínas de Choque Térmico HSP70/genética , Mutação , Imunidade Vegetal , Raízes de Plantas/microbiologia , Percepção de Quorum/genética , Estresse Fisiológico , Sequenciamento Completo do Genoma
4.
PLoS Pathog ; 10(10): e1004444, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25299655

RESUMO

By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour), a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP) NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate) and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (K(D) of 0.6 µM) greater than that for nopaline (KD of 3.7 µM). Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to support the niche construction paradigm in bacterial pathogens.


Assuntos
Agrobacterium tumefaciens/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Tumores de Planta/microbiologia , Agrobacterium tumefaciens/isolamento & purificação , Arginina/análogos & derivados , Arginina/química , Arginina/farmacologia , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/efeitos dos fármacos , Genes Bacterianos/genética , Ligantes , Plasmídeos/genética
5.
BMC Genomics ; 16: 788, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26467299

RESUMO

BACKGROUND: Dickeya solani is an emerging pathogen that causes soft rot and blackleg diseases in several crops including Solanum tuberosum, but little is known about its genomic diversity and evolution. RESULTS: We combined Illumina and PacBio technologies to complete the genome sequence of D. solani strain 3337 that was used as a reference to compare with 19 other genomes (including that of the type strain IPO2222(T)) which were generated by Illumina technology. This population genomic analysis highlighted an unexpected variability among D. solani isolates since it led to the characterization of two distinct sub-groups within the D. solani species. This approach also revealed different types of variations such as scattered SNP/InDel variations as well as replacing and additive horizontal gene transfers (HGT). Infra-species (between the two D. solani sub-groups) and inter-species (between D. solani and D. dianthicola) replacing HGTs were observed. Finally, this work pointed that genetic and functional variation in the motility trait could contribute to aggressiveness variability in D. solani. CONCLUSIONS: This work revealed that D. solani genomic variability may be caused by SNPs/InDels as well as replacing and additive HGT events, including plasmid acquisition; hence the D. solani genomes are more dynamic than that were previously proposed. This work alerts on precautions in molecular diagnosis of this emerging pathogen.


Assuntos
Enterobacteriaceae/genética , Transferência Genética Horizontal/genética , Genética Populacional , Metagenômica , Sequência de Bases , Mapeamento Cromossômico , Enterobacteriaceae/patogenicidade , Genoma Bacteriano , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Solanum tuberosum/microbiologia
6.
Genome Announc ; 6(17)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700139

RESUMO

Dickeya solani species are emerging bacterial pathogens of Solanum tuberosum Here, we announce the complete genome sequences of two strains, Dickeya solani D s0432-1 and PPO 9019. Strain PPO 9019 represents the first described member of the genus Dickeya with an extrachromosomal genetic element.

7.
Genome Announc ; 6(4)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371347

RESUMO

Dickeya spp. are bacterial pathogens causing soft-rot and blackleg diseases on a wide range of ornamental plants and crops. In this paper, we announce the PacBio complete genome sequences of the plant pathogens Dickeya solani RNS 08.23.3.1.A (PRI3337) and Dickeya dianthicola RNS04.9.

8.
Stand Genomic Sci ; 11: 87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27942352

RESUMO

Several species of the genus Dickeya provoke soft rot and blackleg diseases on a wide range of plants and crops. Dickeya solani has been identified as the causative agent of diseases outbreaks on potato culture in Europe for the last decade. Here, we report the complete genome of the D. solani IPO 2222T. Using PacBio and Illumina technologies, a unique circular chromosome of 4,919,833 bp was assembled. The G + C content reaches 56% and the genomic sequence contains 4,059 predicted proteins. The ANI values calculated for D. solani IPO 2222T vs. other available D. solani genomes was over 99.9% indicating a high genetic homogeneity within D. solani species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA