Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 67(3): 452-466, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30548313

RESUMO

Stem/progenitor cell transplantation delivery of astrocytes is a potentially powerful strategy for spinal cord injury (SCI). Axon extension into SCI lesions that occur spontaneously or in response to experimental manipulations is often observed along endogenous astrocyte "bridges," suggesting that augmenting this response via astrocyte lineage transplantation can enhance axon regrowth. Given the importance of respiratory dysfunction post-SCI, we transplanted glial-restricted precursors (GRPs)-a class of lineage-restricted astrocyte progenitors-into the C2 hemisection model and evaluated effects on diaphragm function and the growth response of descending rostral ventral respiratory group (rVRG) axons that innervate phrenic motor neurons (PhMNs). GRPs survived long term and efficiently differentiated into astrocytes in injured spinal cord. GRPs promoted significant recovery of diaphragm electromyography amplitudes and stimulated robust regeneration of injured rVRG axons. Although rVRG fibers extended across the lesion, no regrowing axons re-entered caudal spinal cord to reinnervate PhMNs, suggesting that this regeneration response-although impressive-was not responsible for recovery. Within ipsilateral C3-5 ventral horn (PhMN location), GRPs induced substantial sprouting of spared fibers originating in contralateral rVRG and 5-HT axons that are important for regulating PhMN excitability; this sprouting was likely involved in functional effects of GRPs. Finally, GRPs reduced the macrophage response (which plays a key role in inducing axon retraction and limiting regrowth) both within the hemisection and at intact caudal spinal cord surrounding PhMNs. These findings demonstrate that astrocyte progenitor transplantation promotes significant plasticity of rVRG-PhMN circuitry and restoration of diaphragm function and suggest that these effects may be in part through immunomodulation.


Assuntos
Axônios/fisiologia , Macrófagos/metabolismo , Neurônios Motores/fisiologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/transplante , Recuperação de Função Fisiológica/fisiologia , Respiração , Traumatismos da Medula Espinal/terapia , Animais , Vértebra Cervical Áxis , Feminino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia
2.
J Neurotrauma ; 37(3): 572-579, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31392919

RESUMO

Damage to respiratory neural circuitry and consequent loss of diaphragm function is a major cause of morbidity and mortality after cervical spinal cord injury (SCI). Upon SCI, inspiratory signals originating in the medullary rostral ventral respiratory group (rVRG) become disrupted from their phrenic motor neuron (PhMN) targets, resulting in diaphragm paralysis. Limited growth of both damaged and spared axon populations occurs after central nervous system trauma attributed, in part, to expression of various growth inhibitory molecules, some that act through direct interaction with the protein tyrosine phosphatase sigma (PTPσ) receptor located on axons. In the rat model of C2 hemisection SCI, we aimed to block PTPσ signaling to investigate potential mechanisms of axon plasticity and respiratory recovery using a small molecule peptide mimetic that inhibits PTPσ. The peptide was soaked into a biocompatible gelfoam and placed directly over the injury site immediately after hemisection and replaced with a freshly soaked piece 1 week post-SCI. At 8 weeks post-hemisection, PTPσ peptide significantly improved ipsilateral hemidiaphragm function, as assessed in vivo with electromyography recordings. PTPσ peptide did not promote regeneration of axotomized rVRG fibers originating in ipsilateral medulla, as assessed by tracing after adeno-associated virus serotype 2/mCherry injection into the rVRG. Conversely, PTPσ peptide stimulated robust sprouting of contralateral-originating rVRG fibers and serotonergic axons within the PhMN pool ipsilateral to hemisection. Further, relesion through the hemisection did not compromise diaphragm recovery, suggesting that PTPσ peptide-induced restoration of function was attributed to plasticity of spared axon pathways descending in contralateral spinal cord. These data demonstrate that inhibition of PTPσ signaling can promote significant recovery of diaphragm function after SCI by stimulating plasticity of critical axon populations spared by the injury and consequently enhancing descending excitatory input to PhMNs.


Assuntos
Axônios/fisiologia , Materiais Biomiméticos/administração & dosagem , Diafragma/fisiologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/antagonistas & inibidores , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Adenoviridae , Animais , Medula Cervical/lesões , Diafragma/inervação , Feminino , Vetores Genéticos/administração & dosagem , Neurônios Motores/metabolismo , Nervo Frênico/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia
3.
eNeuro ; 6(5)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31427403

RESUMO

Compromise in inspiratory breathing following cervical spinal cord injury (SCI) is caused by damage to descending bulbospinal axons originating in the rostral ventral respiratory group (rVRG) and consequent denervation and silencing of phrenic motor neurons (PhMNs) that directly control diaphragm activation. In a rat model of high-cervical hemisection SCI, we performed systemic administration of an antagonist peptide directed against phosphatase and tensin homolog (PTEN), a central inhibitor of neuron-intrinsic axon growth potential. PTEN antagonist peptide (PAP4) robustly restored diaphragm function, as determined with electromyography (EMG) recordings in living SCI animals. PAP4 promoted substantial, long-distance regeneration of injured rVRG axons through the lesion and back toward PhMNs located throughout the C3-C5 spinal cord. These regrowing rVRG axons also formed putative excitatory synaptic connections with PhMNs, demonstrating reconnection of rVRG-PhMN-diaphragm circuitry. Lastly, re-lesion through the hemisection site completely ablated functional recovery induced by PAP4. Collectively, our findings demonstrate that axon regeneration in response to systemic PAP4 administration promoted recovery of diaphragmatic respiratory function after cervical SCI.


Assuntos
Axônios/fisiologia , Diafragma/fisiologia , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia , Mecânica Respiratória/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Vértebras Cervicais , Diafragma/inervação , Feminino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações
4.
Exp Neurol ; 303: 108-119, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29453976

RESUMO

Damage to respiratory neural circuitry and consequent loss of diaphragm function is a major cause of morbidity and mortality in individuals suffering from traumatic cervical spinal cord injury (SCI). Repair of CNS axons after SCI remains a therapeutic challenge, despite current efforts. SCI disrupts inspiratory signals originating in the rostral ventral respiratory group (rVRG) of the medulla from their phrenic motor neuron (PhMN) targets, resulting in loss of diaphragm function. Using a rat model of cervical hemisection SCI, we aimed to restore rVRG-PhMN-diaphragm circuitry by stimulating regeneration of injured rVRG axons via targeted induction of Rheb (ras homolog enriched in brain), a signaling molecule that regulates neuronal-intrinsic axon growth potential. Following C2 hemisection, we performed intra-rVRG injection of an adeno-associated virus serotype-2 (AAV2) vector that drives expression of a constitutively-active form of Rheb (cRheb). rVRG neuron-specific cRheb expression robustly increased mTOR pathway activity within the transduced rVRG neuron population ipsilateral to the hemisection, as assessed by levels of phosphorylated ribosomal S6 kinase. By co-injecting our novel AAV2-mCherry/WGA anterograde/trans-synaptic axonal tracer into rVRG, we found that cRheb expression promoted regeneration of injured rVRG axons into the lesion site, while we observed no rVRG axon regrowth with AAV2-GFP control. AAV2-cRheb also significantly reduced rVRG axonal dieback within the intact spinal cord rostral to the lesion. However, cRheb expression did not promote any recovery of ipsilateral hemi-diaphragm function, as assessed by inspiratory electromyography (EMG) burst amplitudes. This lack of functional recovery was likely because regrowing rVRG fibers did not extend back into the caudal spinal cord to synaptically reinnervate PhMNs that we retrogradely-labeled with cholera toxin B from the ipsilateral hemi-diaphragm. Our findings demonstrate that enhancing neuronal-intrinsic axon growth capacity can promote regeneration of injured bulbospinal respiratory axons after SCI, but this strategy may need to be combined with other manipulations to achieve reconnection of damaged neural circuitry and ultimately recovery of diaphragm function.


Assuntos
Tronco Encefálico/patologia , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Regeneração da Medula Espinal/fisiologia , Potenciais de Ação/fisiologia , Animais , Axônios/patologia , Diafragma/efeitos dos fármacos , Diafragma/patologia , Diafragma/fisiopatologia , Modelos Animais de Doenças , Eletromiografia , Feminino , Lateralidade Funcional , Junção Neuromuscular/fisiopatologia , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução Genética , Aglutininas do Germe de Trigo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA