Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Brain ; 146(3): 991-1005, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348636

RESUMO

The mechanisms underlying how urban air pollution affects Alzheimer's disease (AD) are largely unknown. Ozone (O3) is a reactive gas component of air pollution linked to increased AD risk, but is confined to the respiratory tract after inhalation, implicating the peripheral immune response to air pollution in AD neuropathology. Here, we demonstrate that O3 exposure impaired the ability of microglia, the brain's parenchymal immune cells, to associate with and form a protective barrier around Aß plaques, leading to augmented dystrophic neurites and increased Aß plaque load. Spatial proteomic profiling analysis of peri-plaque proteins revealed a microenvironment-specific signature of dysregulated disease-associated microglia protein expression and increased pathogenic molecule levels with O3 exposure. Unexpectedly, 5xFAD mice exhibited an augmented pulmonary cell and humoral immune response to O3, supporting that ongoing neuropathology may regulate the peripheral O3 response. Circulating HMGB1 was one factor upregulated in only 5xFAD mice, and peripheral HMGB1 was separately shown to regulate brain Trem2 mRNA expression. These findings demonstrate a bidirectional lung-brain axis regulating the central and peripheral AD immune response and highlight this interaction as a potential novel therapeutic target in AD.


Assuntos
Doença de Alzheimer , Proteína HMGB1 , Ozônio , Camundongos , Animais , Ozônio/toxicidade , Ozônio/metabolismo , Proteômica , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Pulmão/metabolismo , Pulmão/patologia , Placa Amiloide/patologia , Microglia/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos
2.
Inhal Toxicol ; 36(4): 261-274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38836331

RESUMO

OBJECTIVE: Our work is focused on tungsten, considered as an emerging contaminant. Its environmental dispersion is partly due to mining and military activities. Exposure scenario can also be occupational, in areas such as the hard metal industry and specific nuclear facilities. Our study investigated the cerebral effects induced by the inhalation of tungsten particles. METHODS: Inhalation exposure campaigns were carried out at two different concentrations (5 and 80 mg/m3) in single and repeated modes (4 consecutive days) in adult rats within a nose-only inhalation chamber. Processes involved in brain toxicity were investigated 24 h after exposure. RESULTS AND DISCUSSION: Site-specific effects in terms of neuroanatomy and concentration-dependent changes in specific cellular actors were observed. Results obtained in the olfactory bulb suggest a potential early effect on the survival of microglial cells. Depending on the mode of exposure, these cells showed a decrease in density accompanied by an increase in an apoptotic marker. An abnormal phenotype of the nuclei of mature neurons, suggesting neuronal suffering, was also observed in the frontal cortex, and can be linked to the involvement of oxidative stress. The differential effects observed according to exposure patterns could involve two components: local (brain-specific) and/or systemic. Indeed, tungsten, in addition to being found in the lungs and kidneys, was present in the brain of animals exposed to the high concentration. CONCLUSION: Our data question the perceived innocuity of tungsten relative to other metals and raise hypotheses regarding possible adaptive or neurotoxic mechanisms that could ultimately alter neuronal integrity.


Assuntos
Encéfalo , Exposição por Inalação , Ratos Wistar , Tungstênio , Animais , Tungstênio/toxicidade , Masculino , Exposição por Inalação/efeitos adversos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ratos , Biomarcadores/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
3.
Alzheimers Dement ; 20(5): 3551-3566, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38624088

RESUMO

INTRODUCTION: Ozone (O3) is an air pollutant associated with Alzheimer's disease (AD) risk. The lung-brain axis is implicated in O3-associated glial and amyloid pathobiology; however, the role of disease-associated astrocytes (DAAs) in this process remains unknown. METHODS: The O3-induced astrocyte phenotype was characterized in 5xFAD mice by spatial transcriptomics and proteomics. Hmgb1fl/fl LysM-Cre+ mice were used to assess the role of peripheral myeloid cell high mobility group box 1 (HMGB1). RESULTS: O3 increased astrocyte and plaque numbers, impeded the astrocyte proteomic response to plaque deposition, augmented the DAA transcriptional fingerprint, increased astrocyte-microglia contact, and reduced bronchoalveolar lavage immune cell HMGB1 expression in 5xFAD mice. O3-exposed Hmgb1fl/fl LysM-Cre+ mice exhibited dysregulated DAA mRNA markers. DISCUSSION: Astrocytes and peripheral myeloid cells are critical lung-brain axis interactors. HMGB1 loss in peripheral myeloid cells regulates the O3-induced DAA phenotype. These findings demonstrate a mechanism and potential intervention target for air pollution-induced AD pathobiology. HIGHLIGHTS: Astrocytes are part of the lung-brain axis, regulating how air pollution affects plaque pathology. Ozone (O3) astrocyte effects are associated with increased plaques and modified by plaque localization. O3 uniquely disrupts the astrocyte transcriptomic and proteomic disease-associated astrocyte (DAA) phenotype in plaque associated astrocytes (PAA). O3 changes the PAA cell contact with microglia and cell-cell communication gene expression. Peripheral myeloid cell high mobility group box 1 regulates O3-induced transcriptomic changes in the DAA phenotype.


Assuntos
Doença de Alzheimer , Astrócitos , Proteína HMGB1 , Ozônio , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Proteína HMGB1/metabolismo , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Encéfalo/patologia , Encéfalo/metabolismo , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Microglia/metabolismo , Poluentes Atmosféricos , Pulmão/patologia , Peptídeos beta-Amiloides/metabolismo
4.
J Neuroinflammation ; 17(1): 351, 2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33222683

RESUMO

BACKGROUND: Air pollution has been linked to neurodegenerative diseases, including Alzheimer's disease (AD), and the underlying neuroimmune mechanisms remain poorly understood. TREM2 is a myeloid cell membrane receptor that is a key regulator of disease-associated microglia (DAM) cells, where loss-of-function TREM2 mutations are associated with an increased risk of AD. At present, the basic function of TREM2 in neuroinflammation is a point of controversy. Further, the impact of air pollution on TREM2 and the DAM phenotype is largely unknown. Using diesel exhaust (DE) as a model of urban air pollution exposure, we sought to address its impact on TREM2 expression, the DAM phenotype, the association of microglia with the neurovasculature, and the role of TREM2 in DE-induced neuroinflammation. METHODS: WYK rats were exposed for 4 weeks to DE (0, 50, 150, 500 µg/m3) by inhalation. DE particles (DEP) were administered intratracheally once (600 µg/mouse) or 8 times (100 µg/mouse) across 28 days to male mice (Trem2+/+, Trem2-/-, PHOX+/+, and PHOX-/-). RESULTS: Rats exposed to DE exhibited inverted-U patterns of Trem2 mRNA expression in the hippocampus and frontal cortex, while TREM2 protein was globally diminished, indicating impaired TREM2 expression. Analysis of DAM markers Cx3Cr1, Lyz2, and Lpl in the frontal cortex and hippocampus showed inverted-U patterns of expression as well, supporting dysregulation of the DAM phenotype. Further, microglial-vessel association decreased with DE inhalation in a dose-dependent manner. Mechanistically, intratracheal administration of DEP increased Tnf (TNFα), Ncf1 (p47PHOX), and Ncf2 (p67PHOX) mRNA expression in only Trem2+/+ mice, where Il1b (IL-1ß) expression was elevated in only Trem2-/- mice, emphasizing an important role for TREM2 in DEP-induced neuroinflammation. CONCLUSIONS: Collectively, these findings reveal a novel role for TREM2 in how air pollution regulates neuroinflammation and provides much needed insight into the potential mechanisms linking urban air pollution to AD.


Assuntos
Poluição do Ar/efeitos adversos , Mediadores da Inflamação/metabolismo , Glicoproteínas de Membrana/biossíntese , Receptores Imunológicos/biossíntese , Emissões de Veículos/toxicidade , Administração por Inalação , Animais , Relação Dose-Resposta a Droga , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ratos , Ratos Endogâmicos WKY , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética
5.
J Neuroinflammation ; 16(1): 60, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871598

RESUMO

BACKGROUND: While NF-κB p50 function is impaired in central nervous system disease, aging in non-CNS tissues, and response to reactive oxygen species, the role of NF-κB p50 in aging-associated microglial pro-inflammatory priming is poorly understood. METHODS: Male NF-κB p50+/+ and NF-κB p50-/- mice at three different ages (1.5-3.0 month old, 8.0-11.0 month old, and 16.0-18.0 month old) were treated with LPS (5 mg/kg, IP) to trigger peripheral inflammation, where circulating cytokines, neuroinflammation, microglia morphology, and NF-κB p50/p65 function in brain tissue were determined 3 h later. RESULTS: Peripheral LPS injection in 9-month-old C57BL/6 mice resulted in lower NF-κB p50 DNA binding of nuclear extracts from the whole brain, when compared to 3-week-old C57BL/6 mice, revealing differences in LPS-induced NF-κB p50 activity in the brain across the mouse lifespan. To examine the consequences of loss NF-κB p50 function with aging, NF-κB p50+/+ and NF-κB p50-/- mice of three different age groups (1.5-3.0 month old, 8.0-11.0 month old, and 16.0-18.0 month old) were injected with LPS (5 mg/kg, IP). NF-κB p50-/- mice showed markedly elevated circulating, midbrain, and microglial TNFα when compared to NF-κB p50+/+ mice at all ages. Notably, the 16.0-18.0-month-old (middle aged) NF-κB p50-/- mice exhibited synergistically augmented LPS-induced serum and midbrain TNFα when compared to the younger (1.5-3.0 month old, young adult) NF-κB p50-/- mice. The 16.0-18.0-month-old LPS-treated NF-κB p50-/- mice also had the highest midbrain IL-1ß expression, largest number of microglia with changes in morphology, and greatest elevation of pro-inflammatory factors in isolated adult microglia. Interestingly, aging NF-κB p50-/- mice exhibited decreased brain NF-κB p65 expression and activity. CONCLUSIONS: These findings support that loss of NF-κB p50 function and aging in middle-aged mice may interact to excessively augment peripheral/microglial pro-inflammatory responses and point to a novel neuroinflammation signaling mechanism independent the NF-κB p50/p65 transcription factor in this process.


Assuntos
Envelhecimento/patologia , Encéfalo/metabolismo , Inflamação/patologia , Microglia/patologia , Subunidade p50 de NF-kappa B/deficiência , Fatores Etários , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Subunidade p50 de NF-kappa B/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
FASEB J ; 30(5): 1880-91, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26864854

RESUMO

Air pollution is implicated in neurodegenerative disease risk and progression and in microglial activation, but the mechanisms are unknown. In this study, microglia remained activated 24 h after ozone (O3) exposure in rats, suggesting a persistent signal from lung to brain. Ex vivo analysis of serum from O3-treated rats revealed an augmented microglial proinflammatory response and ß-amyloid 42 (Aß42) neurotoxicity independent of traditional circulating cytokines, where macrophage-1 antigen-mediated microglia proinflammatory priming. Aged mice exhibited reduced pulmonary immune profiles and the most pronounced neuroinflammation and microglial activation in response to mixed vehicle emissions. Consistent with this premise, cluster of differentiation 36 (CD36)(-/-) mice exhibited impaired pulmonary immune responses concurrent with augmented neuroinflammation and microglial activation in response to O3 Further, aging glia were more sensitive to the proinflammatory effects of O3 serum. Together, these findings outline the lung-brain axis, where air pollutant exposures result in circulating, cytokine-independent signals present in serum that elevate the brain proinflammatory milieu, which is linked to the pulmonary response and is further augmented with age.-Mumaw, C. L., Levesque, S., McGraw, C., Robertson, S., Lucas, S., Stafflinger, J. E., Campen, M. J., Hall, P., Norenberg, J. P., Anderson, T., Lund, A. K., McDonald, J. D., Ottens, A. K., Block, M. L. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors.


Assuntos
Poluição do Ar/efeitos adversos , Encéfalo/efeitos dos fármacos , Pneumopatias/induzido quimicamente , Pulmão/efeitos dos fármacos , Microglia/efeitos dos fármacos , Ozônio/toxicidade , Animais , Anticorpos , Encéfalo/metabolismo , Linhagem Celular , Inflamação/induzido quimicamente , Inflamação/metabolismo , Pulmão/metabolismo , Pneumopatias/metabolismo , Antígeno de Macrófago 1/imunologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos
7.
Glia ; 63(3): 423-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25331559

RESUMO

Redox-signaling is implicated in deleterious microglial activation underlying CNS disease, but how ROS program aberrant microglial function is unknown. Here, the oxidation of NF-κB p50 to a free radical intermediate is identified as a marker of dysfunctional M1 (pro-inflammatory) polarization in microglia. Microglia exposed to steady fluxes of H2 O2 showed altered NF-κB p50 protein-protein interactions, decreased NF-κB p50 DNA binding, and augmented late-stage TNFα expression, indicating that H2 O2 impairs NF-κB p50 function and prolongs amplified M1 activation. NF-κB p50(-/-) mice and cultures exhibited a disrupted M2 (alternative) response and impaired resolution of the M1 response. Persistent neuroinflammation continued 1 week after LPS (1 mg/kg, IP) administration in the NF-κB p50(-/-) mice. However, peripheral inflammation had already resolved in both strains of mice. Treatment with the spin-trap DMPO mildly reduced LPS-induced 22 h TNFα in the brain in NF-κB p50(+/+) mice. Interestingly, DMPO failed to reduce and strongly augmented brain TNFα production in NF-κB p50(-/-) mice, implicating a fundamental role for NF-κB p50 in the regulation of chronic neuroinflammation by free radicals. These data identify NF-κB p50 as a key redox-signaling mechanism regulating the M1/M2 balance in microglia, where loss of function leads to a CNS-specific vulnerability to chronic inflammation.


Assuntos
Peróxido de Hidrogênio/metabolismo , Microglia/fisiologia , Subunidade p50 de NF-kappa B/metabolismo , Animais , Encéfalo/imunologia , Linhagem Celular , Células Cultivadas , DNA/metabolismo , Modelos Animais de Doenças , Inflamação/fisiopatologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidade p50 de NF-kappa B/genética , Neuroimunomodulação/fisiologia , Oxirredução , Ratos , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Nat Rev Neurosci ; 11(10): 718-26, 2010 10.
Artigo em Inglês | MEDLINE | ID: mdl-20852655

RESUMO

To celebrate the first 10 years of Nature Reviews Neuroscience, we invited the authors of the most cited article of each year to look back on the state of their field of research at the time of publication and the impact their article has had, and to discuss the questions that might be answered in the next 10 years. This selection of highly cited articles provides interesting snapshots of the progress that has been made in diverse areas of neuroscience. They show the enormous influence of neuroimaging techniques and highlight concepts that have generated substantial interest in the past decade, such as neuroimmunology, social neuroscience and the 'network approach' to brain function. These advancements will pave the way for further exciting discoveries that lie ahead.


Assuntos
Neurociências , Publicações Periódicas como Assunto , Editoração , Pesquisa , Humanos , Pesquisadores
9.
J Neurochem ; 125(5): 756-65, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23470120

RESUMO

Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson's disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (< 0.22 µM; 50 µg/mL), ultrafine carbon black (ufCB, 50 µg/mL), or DEP extracts (eDEP; from 50 µg/mL DEP), and the effect of microglial activation and dopaminergic (DA) neuron function was assessed. All three treatments showed enhanced ameboid microglia morphology, increased H2 O2 production, and decreased DA uptake. Mechanistic inquiry revealed that the scavenger receptor inhibitor fucoidan blocked DEP internalization in microglia, but failed to alter DEP-induced H2 O2 production in microglia. However, pre-treatment with the MAC1/CD11b inhibitor antibody blocked microglial H2 O2 production in response to DEP. MAC1(-/-) mesencephalic neuron-glia cultures were protected from DEP-induced loss of DA neuron function, as measured by DA uptake. These findings support that DEP may activate microglia through multiple mechanisms, where scavenger receptors regulate internalization of DEP and the MAC1 receptor is mandatory for both DEP-induced microglial H2 O2 production and loss of DA neuron function.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Antígeno de Macrófago 1/fisiologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Animais , Linhagem Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia , Gravidez , Ratos , Ratos Endogâmicos F344
10.
J Neuroinflammation ; 10: 58, 2013 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-23642074

RESUMO

BACKGROUND: Active HIV infection within the central nervous system (CNS) is confined primarily to microglia. The glial cell compartment acts as a viral reservoir behind the blood-brain barrier. It provides an additional roadblock to effective pharmacological treatment via expression of multiple drug efflux transporters, including P-glycoprotein. HIV/AIDS patients frequently suffer bacterial and viral co-infections, leading to deregulation of glial cell function and release of pro-inflammatory mediators including cytokines, chemokines, and nitric oxide. METHODS: To better define the role of inflammation in decreased HIV drug accumulation into CNS targets, accumulation of the antiretroviral saquinavir was examined in purified cultures of rodent microglia exposed to the prototypical inflammatory mediator lipopolysaccharide (LPS). RESULTS: [(3)H]-Saquinavir accumulation by microglia was rapid, and was increased up to two-fold in the presence of the specific P-glycoprotein inhibitor, PSC833. After six or 24 hours of exposure to 10 ng/ml LPS, saquinavir accumulation was decreased by up to 45%. LPS did not directly inhibit saquinavir transport, and did not affect P-glycoprotein protein expression. LPS exposure did not alter RNA and/or protein expression of other transporters including multidrug resistance-associated protein 1 and several solute carrier uptake transporters. CONCLUSIONS: The decrease in saquinavir accumulation in microglia following treatment with LPS is likely multi-factorial, since drug accumulation was attenuated by inhibitors of NF-κß and the MEK1/2 pathway in the microglia cell line HAPI, and in primary microglia cultures from toll-like receptor 4 deficient mice. These data provide new pharmacological insights into why microglia act as a difficult-to-treat viral sanctuary site.


Assuntos
Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Microglia/fisiologia , Saquinavir/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Western Blotting , Linhagem Celular , Interpretação Estatística de Dados , Feminino , Infecções por HIV/virologia , Inibidores da Protease de HIV/metabolismo , Lipopolissacarídeos/farmacologia , Nitritos/metabolismo , Gravidez , Cultura Primária de Células , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Saquinavir/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
11.
J Biochem Mol Toxicol ; 27(2): 137-49, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23349115

RESUMO

Accumulating evidence indicates that pesticide exposure is associated with an increased risk for developing Parkinson's disease (PD). Several pesticides known to damage dopaminergic (DA) neurons, such as paraquat, rotenone, lindane, and dieldrin also demonstrate the ability to activate microglia, the resident innate immune cell in the brain. While each of these environmental toxicants may impact microglia through unique mechanisms, they all appear to converge on a common final pathway of microglial activation: NADPH oxidase 2 (NOX2) activation. This review will detail the role of microglia in selective DA neurotoxicity, highlight what is currently known about the mechanism of microglial NOX2 activation in these key pesticides, and describe the importance for DA neuron survival and PD etiology.


Assuntos
Glicoproteínas de Membrana/metabolismo , Microglia/enzimologia , NADPH Oxidases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson Secundária/enzimologia , Praguicidas/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/patologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Microglia/patologia , NADPH Oxidase 2 , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia
12.
Cell Mol Life Sci ; 69(14): 2409-27, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22581365

RESUMO

Microglia are key sentinels of central nervous system health, and their dysfunction has been widely implicated in the progressive nature of neurodegenerative diseases. While microglia can produce a host of factors that are toxic to neighboring neurons, NOX2 has been implicated as a common and essential mechanism of microglia-mediated neurotoxicity. Accumulating evidence indicates that activation of the NOX2 enzyme complex in microglia is neurotoxic, both through the production of extracellular reactive oxygen species that damage neighboring neurons as well as the initiation of redox signaling in microglia that amplifies the pro-inflammatory response. More specifically, evidence supports that NOX2 redox signaling enhances microglial sensitivity to pro-inflammatory stimuli, and amplifies the production of neurotoxic cytokines, to promote chronic and neurotoxic microglial activation. Here, we describe the evidence denoting the role of NOX2 in microglia-mediated neurotoxicity with an emphasis on Alzheimer's and Parkinson's disease, describe available inhibitors that have been tested, and detail evidence of the neuroprotective and therapeutic potential of targeting this enzyme complex to regulate microglia.


Assuntos
Inibidores Enzimáticos/toxicidade , Glicoproteínas de Membrana/antagonistas & inibidores , Microglia/enzimologia , NADPH Oxidases/antagonistas & inibidores , Inibidores Enzimáticos/química , Humanos , Glicoproteínas de Membrana/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Espécies Reativas de Oxigênio/metabolismo
13.
J Neuroinflammation ; 8: 105, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21864400

RESUMO

BACKGROUND: Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. OBJECTIVE: We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE) and addressed the minimum levels necessary to elicit neuroinflammation and markers of early neuropathology. METHODS: Male Fischer 344 rats were exposed to DE (992, 311, 100, 35 and 0 µg PM/m³) by inhalation over 6 months. RESULTS: DE exposure resulted in elevated levels of TNFα at high concentrations in all regions tested, with the exception of the cerebellum. The midbrain region was the most sensitive, where exposures as low as 100 µg PM/m³ significantly increased brain TNFα levels. However, this sensitivity to DE was not conferred to all markers of neuroinflammation, as the midbrain showed no increase in IL-6 expression at any concentration tested, an increase in IL-1ß at only high concentrations, and a decrease in MIP-1α expression, supporting that compensatory mechanisms may occur with subchronic exposure. Aß42 levels were the highest in the frontal lobe of mice exposed to 992 µg PM/m³ and tau [pS199] levels were elevated at the higher DE concentrations (992 and 311 µg PM/m³) in both the temporal lobe and frontal lobe, indicating that proteins linked to preclinical Alzheimer's disease were affected. α Synuclein levels were elevated in the midbrain in response to the 992 µg PM/m³ exposure, supporting that air pollution may be associated with early Parkinson's disease-like pathology. CONCLUSIONS: Together, the data support that the midbrain may be more sensitive to the neuroinflammatory effects of subchronic air pollution exposure. However, the DE-induced elevation of proteins associated with neurodegenerative diseases was limited to only the higher exposures, suggesting that air pollution-induced neuroinflammation may precede preclinical markers of neurodegenerative disease in the midbrain.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar , Biomarcadores/metabolismo , Encéfalo , Encefalite , Doenças Neurodegenerativas , Emissões de Veículos/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/patologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Encefalite/induzido quimicamente , Encefalite/imunologia , Humanos , Exposição por Inalação , Masculino , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Ratos , Ratos Endogâmicos F344 , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
15.
Brain ; 133(Pt 3): 808-21, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20123724

RESUMO

Microglia, the innate immune cells in the brain, can become chronically activated in response to dopaminergic neuron death, fuelling a self-renewing cycle of microglial activation followed by further neuron damage (reactive microgliosis), which is implicated in the progressive nature of Parkinson's disease. Here, we use an in vitro approach to separate neuron injury factors from the cellular actors of reactive microgliosis and discover molecular signals responsible for chronic and toxic microglial activation. Upon injury with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium, N27 cells (dopaminergic neuron cell line) released soluble neuron injury factors that activated microglia and were selectively toxic to dopaminergic neurons in mixed mesencephalic neuron-glia cultures through nicotinamide adenine dinucleotide phosphate oxidase. mu-Calpain was identified as a key signal released from damaged neurons, causing selective dopaminergic neuron death through activation of microglial nicotinamide adenine dinucleotide phosphate oxidase and superoxide production. These findings suggest that dopaminergic neurons may be inherently susceptible to the pro-inflammatory effects of neuron damage, i.e. reactive microgliosis, providing much needed insight into the chronic nature of Parkinson's disease.


Assuntos
Calpaína/metabolismo , Dopamina/metabolismo , Gliose/fisiopatologia , Microglia/fisiologia , Neurônios/fisiologia , Animais , Morte Celular/fisiologia , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Feminino , Masculino , Mesencéfalo/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Ratos , Ratos Endogâmicos F344 , Superóxidos/metabolismo
16.
J Alzheimers Dis ; 84(2): 607-608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34569968

RESUMO

The mechanisms underlying how urban air pollution exposure conveys Alzheimer's disease risk and affects plaque pathology is largely unknown. Because particulate matter, the particle component of urban air pollution, varies across location, pollution source, and time, a single model representative of all ambient particulate matter is unfeasible for research investigating the role of ar pollution in central nervous system diseases. More specifically, the investigation of several models of particulate matter with enrichment of source-specific components are essential to employ, in order to more fully understand what characteristics of particulate matter affects Alzheimer's disease, including standardized diesel exhaust particles.


Assuntos
Poluição do Ar/efeitos adversos , Doença de Alzheimer/complicações , Pesquisa Biomédica , Material Particulado/efeitos adversos , Emissões de Veículos/toxicidade , Humanos , Material Particulado/normas
17.
Transl Psychiatry ; 11(1): 390, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253711

RESUMO

Gulf War Illness (GWI) is a chronic, multi-symptom peripheral and CNS condition with persistent microglial dysregulation, but the mechanisms driving the continuous neuroimmune pathology are poorly understood. The alarmin HMGB1 is an autocrine and paracrine pro-inflammatory signal, but the role of circulating HMGB1 in persistent neuroinflammation and GWI remains largely unknown. Using the LPS model of the persistent microglial pro-inflammatory response, male C57Bl/6J mice injected with LPS (5 mg/kg IP) exhibited persistent changes in microglia morphology and elevated pro-inflammatory markers in the hippocampus, cortex, and midbrain 7 days after LPS injection, while the peripheral immune response had resolved. Ex vivo serum analysis revealed an augmented pro-inflammatory response to LPS when microglia cells were cultured with the 7-day LPS serum, indicating the presence of bioactive circulating factors that prime the microglial pro-inflammatory response. Elevated circulating HMGB1 levels were identified in the mouse serum 7 days after LPS administration and in the serum of veterans with GWI. Tail vein injection of rHMGB1 in male C57Bl/6 J mice elevated TNFα mRNA levels in the liver, hippocampus, and cortex, demonstrating HMGB1-induced peripheral and CNS effects. Microglia isolated at 7 days after LPS injection revealed a unique transcriptional profile of 17 genes when compared to the acute 3 H LPS response, 6 of which were also upregulated in the midbrain by rHMGB1, highlighting a distinct signature of the persistent pro-inflammatory microglia phenotype. These findings indicate that circulating HMGB1 is elevated in GWI, regulates the microglial neuroimmune response, and drives chronic neuroinflammation that persists long after the initial instigating peripheral stimulus.


Assuntos
Proteína HMGB1 , Síndrome do Golfo Pérsico , Veteranos , Animais , Proteína HMGB1/sangue , Humanos , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Fenótipo
18.
ASN Neuro ; 13: 17590914211019886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34098774

RESUMO

Increasing evidence associates indoor fungal exposure with deleterious central nervous system (CNS) health, such as cognitive and emotional deficits in children and adults, but the specific mechanisms by which it might impact the brain are poorly understood. Mice were exposed to filtered air, heat-inactivated Aspergillus versicolor (3 × 105 spores), or viable A. versicolor (3 × 105 spores) via nose-only inhalation exposure 2 times per week for 1, 2, or 4 weeks. Analysis of cortex, midbrain, olfactory bulb, and cerebellum tissue from mice exposed to viable A. versicolor spores for 1, 2, and 4 weeks revealed significantly elevated pro-inflammatory (Tnf and Il1b) and glial activity (Gdnf and Cxc3r1) gene expression in several brain regions when compared to filtered air control, with the most consistent and pronounced neuroimmune response 48H following the 4-week exposure in the midbrain and frontal lobe. Bulk RNA-seq analysis of the midbrain tissue confirmed that 4 weeks of A. versicolor exposure resulted in significant transcriptional enrichment of several biological pathways compared to the filtered air control, including neuroinflammation, glial cell activation, and regulation of postsynaptic organization. Upregulation of Drd1, Penk, and Pdyn mRNA expression was confirmed in the 4-week A. versicolor exposed midbrain tissue, highlighting that gene expression important for neurotransmission was affected by repeated A. versicolor inhalation exposure. Taken together, these findings indicate that the brain can detect and respond to A. versicolor inhalation exposure with changes in neuroimmune and neurotransmission gene expression, providing much needed insight into how inhaled fungal exposures can affect CNS responses and regulate neuroimmune homeostasis.


Assuntos
Doenças Neuroinflamatórias , Neuropeptídeos , Animais , Aspergillus , Camundongos , Neuroglia , Neuropeptídeos/genética , Esporos Fúngicos
19.
J Neurochem ; 114(1): 97-109, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20403075

RESUMO

Human immunodeficiency virus (HIV)-1 neuropathology results from collective effects of viral proteins and inflammatory mediators on several cell types. Significant damage is mediated indirectly through inflammatory conditions promulgated by glial cells, including microglia that are productively infected by HIV-1, and astroglia. Neural and glial progenitors exist in both developing and adult brains. To determine whether progenitors are targets of HIV-1, a multi-plex assay was performed to assess chemokine/cytokine expression after treatment with viral proteins transactivator of transcription (Tat) or glycoprotein 120 (gp120). In the initial screen, ten analytes were basally released by murine striatal progenitors. The beta-chemokines CCL5/regulated upon activation, normal T cell expressed and secreted, CCL3/macrophage inflammatory protein-1alpha, and CCL4/macrophage inflammatory protein-1beta were increased by 12-h exposure to HIV-1 Tat. Secreted factors from Tat-treated progenitors were chemoattractive towards microglia, an effect blocked by 2D7 anti-CCR5 antibody pre-treatment. Tat and opiates have interactive effects on astroglial chemokine secretion, but this interaction did not occur in progenitors. gp120 did not affect chemokine/cytokine release, although both CCR5 and CXCR4, which serve as gp120 co-receptors, were detected in progenitors. We postulate that chemokine production by progenitors may be a normal, adaptive process that encourages immune inspection of newly generated cells. Pathogens such as HIV might usurp this function to create a maladaptive state, especially during development or regeneration, when progenitors are numerous.


Assuntos
Quimiocinas/biossíntese , Quimiotaxia , HIV-1/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Citocinas/biossíntese , Células-Tronco Embrionárias/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Camundongos , Alcaloides Opiáceos/farmacologia
20.
J Immunol ; 181(10): 7194-204, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18981141

RESUMO

Neuronal death is known to trigger reactive microgliosis. However, little is known regarding the manner by which microglia are activated by injured neurons and how microgliosis participates in neurodegeneration. In this study we delineate the critical role of macrophage Ag complex-1 (MAC1), a member of the beta(2) integrin family, in mediating reactive microgliosis and promoting dopaminergic (DAergic) neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. MAC1 deficiency greatly attenuated the DAergic neurodegeneration induced by MPTP or 1-methyl-4-phenyl-pyridium iodide (MPP(+)) exposure both in vivo and in vitro, respectively. Reconstituted experiments created by adding microglia from MAC1(-/-) or MAC1(+/+) mice back to MAC1(+/+) neuron-enriched cultures showed that microglia with functional MAC1 expression was mandatory for microglia-enhanced neurotoxicity. Both in vivo and in vitro morphological and Western blot studies demonstrated that MPTP/MPP(+) produced less microglia activation in MAC1(-/-) mice than MAC1(+/+) mice. Further mechanistic studies revealed that a MPP(+)-mediated increase in superoxide production was reduced in MAC1(-/-) neuron-glia cultures compared with MAC1(+/+) cultures. The stunted production of superoxide in MAC1(-/-) microglia is likely linked to the lack of translocation of the cytosolic NADPH oxidase (PHOX) subunit (p47(phox)) to the membrane. In addition, the production of PGE(2) markedly decreased in neuron plus MAC1(-/-) microglia cocultures vs neuron plus MAC1(+/+) microglia cocultures. Taken together, these results demonstrate that MAC1 plays a critical role in MPTP/MPP(+)-induced reactive microgliosis and further support the hypothesis that reactive microgliosis is an essential step in the self-perpetuating cycle leading to progressive DAergic neurodegeneration observed in Parkinson's disease.


Assuntos
Gliose/patologia , Intoxicação por MPTP/patologia , Antígeno de Macrófago 1/metabolismo , Microglia/patologia , Degeneração Neural/patologia , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Técnicas de Cocultura , Dopamina/metabolismo , Gliose/metabolismo , Imuno-Histoquímica , Intoxicação por MPTP/metabolismo , Antígeno de Macrófago 1/genética , Camundongos , Camundongos Knockout , Microscopia Confocal , Neurônios/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA