Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 17(7): 6565-6574, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36951760

RESUMO

In recent years, interest in wireframe DNA origami has increased, with different designs, software, and applications emerging at a fast pace. It is now possible to design a wide variety of shapes by starting with a 2D or 3D mesh and using different scaffold routing strategies. The design choices of the edges in wireframe structures can be important in some applications and have already been shown to influence the interactions between nanostructures and cells. In this work, we increase the alternatives for the design of A-trail routed wireframe DNA structures by using four-helix bundles (4HB). Our approach is based on the incorporation of additional helices to the edges of the wireframe structure to create a 4HB on a square lattice. We first developed the software for the design of these structures, followed by a demonstration of the successful design and folding of a library of structures, and then, finally, we investigated the higher mechanical rigidity of the reinforced structures. In addition, the routing of the scaffold allows us to easily incorporate these reinforced edges together with more flexible, single helix edges, thereby allowing the user to customize the desired stiffness of the structure. We demonstrated the successful folding of this type of hybrid structure and the different stiffnesses of the different parts of the nanostructures using a combination of computational and experimental techniques.


Assuntos
Nanoestruturas , Nanotecnologia , Nanotecnologia/métodos , Conformação de Ácido Nucleico , Nanoestruturas/química , DNA/química , Desenho Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA