Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732168

RESUMO

Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.


Assuntos
Testes de Sensibilidade Microbiana , Timol , Timol/farmacologia , Timol/química , Iodo/química , Iodo/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Aloe/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Composição de Medicamentos/métodos
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256211

RESUMO

Antimicrobial resistance (AMR) is a growing concern for the future of mankind. Common antibiotics fail in the treatment of microbial infections at an alarming rate. Morbidity and mortality rates increase, especially among immune-compromised populations. Medicinal plants and their essential oils, as well as iodine could be potential solutions against resistant pathogens. These natural antimicrobials abate microbial proliferation, especially in synergistic combinations. We performed a simple, one-pot synthesis to prepare our formulation with polyvinylpyrrolidone (PVP)-complexed iodine (I2), Thymus Vulgaris L. (Thyme), and Aloe Barbadensis Miller (AV). SEM/EDS, UV-vis, Raman, FTIR, and XRD analyses verified the purity, composition, and morphology of AV-PVP-Thyme-I2. We investigated the inhibitory action of the bio-formulation AV-PVP-Thyme-I2 against 10 selected reference pathogens on impregnated sterile discs, surgical sutures, cotton gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thyme-I2 were studied by disc diffusion methods and compared with those of the antibiotics gentamycin and nystatin. The results confirm AV-PVP-Thyme-I2 as a strong antifungal and antibacterial agent against the majority of the tested microorganisms with excellent results on cotton bandages and face masks. After storing AV-PVP-Thyme-I2 for 18 months, the inhibitory action was augmented compared to the fresh formulation. Consequently, we suggest AV-PVP-Thyme-I2 as an antimicrobial agent against wound infections and a spray-on contact killing agent.


Assuntos
Anti-Infecciosos , Iodo , Thymus (Planta) , Iodóforos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Povidona-Iodo , Gossypium , Polímeros
3.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835640

RESUMO

Silver nanoparticles (Ag-NPs) demonstrate unique properties and their use is exponentially increasing in various applications. The potential impact of Ag-NPs on human health is debatable in terms of toxicity. The present study deals with MTT(3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium-bromide) assay on Ag-NPs. We measured the cell activity resulting from molecules' mitochondrial cleavage through a spectrophotometer. The machine learning models Decision Tree (DT) and Random Forest (RF) were utilized to comprehend the relationship between the physical parameters of NPs and their cytotoxicity. The input features used for the machine learning were reducing agent, types of cell lines, exposure time, particle size, hydrodynamic diameter, zeta potential, wavelength, concentration, and cell viability. These parameters were extracted from the literature, segregated, and developed into a dataset in terms of cell viability and concentration of NPs. DT helped in classifying the parameters by applying threshold conditions. The same conditions were applied to RF to extort the predictions. K-means clustering was used on the dataset for comparison. The performance of the models was evaluated through regression metrics, viz. root mean square error (RMSE) and R2. The obtained high value of R2 and low value of RMSE denote an accurate prediction that could best fit the dataset. DT performed better than RF in predicting the toxicity parameter. We suggest using algorithms for optimizing and designing the synthesis of Ag-NPs in extended applications such as drug delivery and cancer treatments.


Assuntos
Nanopartículas Metálicas , Linhagem Celular , Aprendizado de Máquina , Nanopartículas Metálicas/toxicidade , Extratos Vegetais , Prata/toxicidade
4.
Molecules ; 27(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234974

RESUMO

Antimicrobial resistance (AMR) is a major concern for the survival of mankind. COVID-19 accelerated another silent pandemic of AMR through the uncontrolled use of antibiotics and biocides. New generations of antimicrobial agents are needed to combat resistant pathogens. Crown ethers can be used as models for drug action because they are similar to antibiotics. Iodine is a well-known microbicide but is characterized by instability and short-term effectivity. Iodine can be stabilized in the form of polyiodides that have a rich topology but are dependent on their immediate surroundings. In addition, copper has been successfully used since the beginning of history as a biocidal agent. We, therefore, combined iodine and copper with the highly selective crown ether 1,4,7,10-tetraoxacyclododecane (12-crown-4). The morphology and composition of the new pentaiodide [Cu(12-crown-4)2]I5 was investigated. Its antimicrobial activities against a selection of 10 pathogens were studied. It was found that C. albicans WDCM 00054 is highly susceptible to [Cu(12-crown-4)2]I5. Additionally, the compound has good to intermediate antimicrobial activity against Gram-positive and Gram-negative bacilli. The chain-like pentaiodide structure is V-shaped and consists of iodine molecules with very short covalent bonds connected to triiodides by halogen bonding. The single crystal structure is arranged across the lattice fringes in the form of ribbons or honeycombs. The susceptibility of microorganisms towards polyiodides depends on polyiodide bonding patterns with halogen-, covalent-, and non-covalent bonding.


Assuntos
Anti-Infecciosos , COVID-19 , Éteres de Coroa , Desinfetantes , Iodo , Antibacterianos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Cobre/química , Éteres de Coroa/química , Halogênios , Humanos , Iodetos , Iodo/química
5.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200814

RESUMO

Multi-drug resistant pathogens are a rising danger for the future of mankind. Iodine (I2) is a centuries-old microbicide, but leads to skin discoloration, irritation, and uncontrolled iodine release. Plants rich in phytochemicals have a long history in basic health care. Aloe Vera Barbadensis Miller (AV) and Salvia officinalis L. (Sage) are effectively utilized against different ailments. Previously, we investigated the antimicrobial activities of smart triiodides and iodinated AV hybrids. In this work, we combined iodine with Sage extracts and pure AV gel with polyvinylpyrrolidone (PVP) as an encapsulating and stabilizing agent. Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-Vis), Surface-Enhanced Raman Spectroscopy (SERS), microstructural analysis by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-Ray-Diffraction (XRD) analysis verified the composition of AV-PVP-Sage-I2. Antimicrobial properties were investigated by disc diffusion method against 10 reference microbial strains in comparison to gentamicin and nystatin. We impregnated surgical sutures with our biohybrid and tested their inhibitory effects. AV-PVP-Sage-I2 showed excellent to intermediate antimicrobial activity in discs and sutures. The iodine within the polymeric biomaterial AV-PVP-Sage-I2 and the synergistic action of the two plant extracts enhanced the microbial inhibition. Our compound has potential for use as an antifungal agent, disinfectant and coating material on sutures to prevent surgical site infections.


Assuntos
Antibacterianos/química , Antibacterianos/síntese química , Aloe/química , Antifúngicos/química , Gentamicinas/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura/métodos , Nistatina/química , Extratos Vegetais/química , Povidona/química , Salvia/química , Salvia officinalis/química , Espectrometria por Raios X/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
6.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500603

RESUMO

The past few decades have witnessed significant progress in anticancer drug discovery. Small molecules containing heterocyclic moieties have attracted considerable interest for designing new antitumor agents. Of these, the pyrimidine ring system is found in multitude of drug structures, and being the building unit of DNA and RNA makes it an attractive scaffold for the design and development of anticancer drugs. Currently, 22 pyrimidine-containing entities are approved for clinical use as anticancer drugs by the FDA. An exhaustive literature search indicates several publications and more than 59 patents from the year 2009 onwards on pyrimidine derivatives exhibiting potent antiproliferative activity. These pyrimidine derivatives exert their activity via diverse mechanisms, one of them being inhibition of protein kinases. Aurora kinase (AURK) and polo-like kinase (PLK) are protein kinases involved in the regulation of the cell cycle. Within the numerous pyrimidine-based small molecules developed as anticancer agents, this review focuses on the pyrimidine fused heterocyclic compounds modulating the AURK and PLK proteins in different phases of clinical trials as anticancer agents. This article aims to provide a comprehensive overview of synthetic strategies for the preparation of pyrimidine derivatives and their associated biological activity on AURK/PLK. It will also present an overview of the synthesis of the heterocyclic-2-aminopyrimidine, 4-aminopyrimidine and 2,4-diaminopyrimidine scaffolds, and one of the pharmacophores in AURK/PLK inhibitors is described systematically.


Assuntos
Aurora Quinases/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirimidinas/síntese química , Pirimidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Quinase 1 Polo-Like
7.
Int J Biol Macromol ; 225: 544-556, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36395949

RESUMO

It has long been known that inorganic nanoparticles (NPs) can interact with biological macromolecules and show a wider range of biomedical characteristics, including antibacterial, anticancer and antioxidant effects, which cannot be mimicked by their bulky counterparts. It is of great importance in their biomedical applications to study DNA damage in bacterial and cancer cells to develop biocompatible therapeutic nano-platforms derived from inorganic NPs. Therefore, to determine how DNA interacts with inorganic NPs serving as therapeutic agents, thermodynamic and structural studies are essential for an understanding of those mechanisms, thereby allowing for their modulation and manipulation of nano-bio interface. In this paper, we aimed to overview the biophysical techniques typically employ to study DNA-NP interactions as well as the mechanistic aspects of the interaction between different inorganic NPs and calf thymus DNA (CT-DNA), a well-known laboratory model, followed by a survey of different parameters affecting the interaction of NPs and DNA. The molecular interactions between inorganic NPs and DNA were then discussed in relation to their anticancer and antibacterial properties. As a final point, we discussed challenges and future perspectives to put forward the possible applications of the field. In conclusion, the interaction between NPs and DNA needs to be studied more deeply in order to develop potential NP-based anticancer and antibacterial platforms for future clinical applications.


Assuntos
Nanopartículas , Nanopartículas/química , Antibacterianos/química , DNA/química , Termodinâmica , Bactérias
8.
Int J Biol Macromol ; 240: 124441, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060978

RESUMO

In the biological systems, exposure to nanoparticles (NPs) can cause complicated interactions with proteins, the formation of protein corona and structural changes to proteins. These changes depend not only on NP physicochemical properties, but also on the intrinsic stability of protein molecules. Although, the formation of protein corona on the surface of NPs and the underlying mechanisms have been fully explored in various studies, no comprehensive review has discussed the direct biochemical and biophysical interactions between NPs and blood proteins, particularly transferrin. In this review, we first discussed the interaction of NPs with proteins to comprehend the effects of physicochemical properties of NPs on protein structure. We then overviewed the transferrin structure and its direct interaction with NPs to explore transferrin stability and its iron ion (Fe3+) release behavior. Afterwards, we surveyed the various biological functions of transferrin, such as Fe3+ binding, receptor binding, antibacterial activity, growth, differentiation, and coagulation, followed by the application of transferrin-modified NPs in the development of drug delivery systems for cancer therapy. We believe that this study can provide useful insight into the design and development of bioconjugates containing NP-transferrin for potential biomedical applications.


Assuntos
Nanopartículas , Coroa de Proteína , Transferrina/química , Coroa de Proteína/química , Nanopartículas/química , Ferro/metabolismo , Ligação Proteica
9.
Polymers (Basel) ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631817

RESUMO

Antimicrobial resistance (AMR) is a challenge for the survival of the human race. The steady rise of resistant microorganisms against the common antimicrobials results in increased morbidity and mortality rates. Iodine and a plethora of plant secondary metabolites inhibit microbial proliferation. Antiseptic iodophors and many phytochemicals are unaffected by AMR. Surgical site and wound infections can be prevented or treated by utilizing such compounds on sutures and bandages. Coating surgical face masks with these antimicrobials can reduce microbial infections and attenuate their burden on the environment by re-use. The facile combination of Aloe Vera Barbadensis Miller (AV), Trans-cinnamic acid (TCA) and Iodine (I2) encapsulated in a polyvinylpyrrolidone (PVP) matrix seems a promising alternative to common antimicrobials. The AV-PVP-TCA-I2 formulation was impregnated into sterile discs, medical gauze bandages, surgical sutures and face masks. Morphology, purity and composition were confirmed by several analytical methods. Antimicrobial activity of AV-PVP-TCA-I2 was investigated by disc diffusion methods against ten microbial strains in comparison to gentamycin and nystatin. AV-PVP-TCA-I2 showed excellent antifungal and strong to intermediate antibacterial activities against most of the selected pathogens, especially in bandages and face masks. The title compound has potential use for prevention or treatment of surgical site and wound infections. Coating disposable face masks with AV-PVP-TCA-I2 may be a sustainable solution for their re-use and waste management.

10.
J Control Release ; 348: 127-147, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35660636

RESUMO

Nanoparticles (NPs) have been used in numerous applications as anticancer, antibacterial and antioxidant agents. Artificial engineering of protein interactions with NPs in biological systems is crucial to develop potential NPs for drug delivery and cancer nanotherapy. The protein corona (PC) on the NP surface, displays an interface between biomacromolecules and NPs, governing their pharmacokinetics and pharmacodynamics. Upon interaction of proteins with the NPs, their surface features are modified and they can easily be removed from the circulation by the mononuclear phagocytic system (MPS). PC properties heavily depend on the biological microenvironment and NP physicochemical parameters. Based on this context, we have surveyed different approaches that have been used for artificial engineering of the PC composition on NP surfaces. We discussed the effects of NP size, shape, surface modifications (PEGylation, self-peptide, other polymers), and protein pre-coating on the PC properties. Additionally, other factors including protein source and structure, intravenous injection and the subsequent shear flow, plasma protein gradients, temperature and local heat transfer, and washing media were considered in the context of their effects on the PC properties and overall target cellular effects. Moreover, the effects of NP-PC complexes on cancer cells based on cellular interactions, organization of intracellular PC (IPC), targeted drug delivery (TDD) and regulation of burst drug release profile of nanoplatforms, enhanced biocompatibility, and clinical applications were discussed followed by challenges and future perspective of the field. In conclusion, this paper can provide useful information to manipulate PC properties on the NP surface, thus trying to provide a literature survey to shorten their shipping from preclinical to clinical trials and to lay the basis for a personalized PC.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Liberação Controlada de Fármacos , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polímeros/metabolismo , Coroa de Proteína/metabolismo , Proteínas/metabolismo , Microambiente Tumoral
11.
Int J Biol Macromol ; 212: 358-369, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35618086

RESUMO

Targeting microtubules (MTs), dynamic and stable proteins in cells, by different ligands have been reported to be a potential strategy to combat cancer cells. Inorganic nanoparticles (NPs) have been widely used as anticancer, antibacterial and free radical scavenging agents, where they come in contact with biological macromolecules. The interaction between the NPs and biological macromolecules like MTs frequently occurs through different mechanisms. A prerequisite for a detailed exploration of MT structures and functions for biomedical applications like cancer therapy is to investigate profoundly the mechanisms involved in MT-NP interactions, for which the full explanation and characterization of the parameters that are responsible for the formation of a NP-protein complex are crucial. Therefore, in view of the fact that the goal of the rational NP-based future drug design and new therapies is to rely on the information of the structural details and protein-NPs binding mechanisms to manipulate the process of developing new potential drugs, a comprehensive investigation of the essence of the molecular recognition/interaction is also of considerable importance. In the present review, first, the microtubule (MT) structure and its binding sites upon interaction with MT stabilizing agents (MSAs) and MT destabilizing agents (MDAs) are introduced and rationalized. Next, MT targeting in cancer therapy and interaction of NPs with MTs are discussed. Furthermore, interaction of NPs with proteins and the manipulation of protein corona (PC), experimental techniques and direct interaction of NPs with MTs, are discussed, and finally the challenges and future perspective of the field are introduced. We envision this review can provide useful information on the manipulation of the MT lattice for the progress of cancer nanomedicine.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Humanos , Microtúbulos/metabolismo , Nanomedicina , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Coroa de Proteína/metabolismo , Proteínas/química
12.
Cancers (Basel) ; 14(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740534

RESUMO

The enhanced permeability and retention (EPR) effect in cancer treatment is one of the key mechanisms that enables drug accumulation at the tumor site. However, despite a plethora of virus/inorganic/organic-based nanocarriers designed to rely on the EPR effect to effectively target tumors, most have failed in the clinic. It seems that the non-compliance of research activities with clinical trials, goals unrelated to the EPR effect, and lack of awareness of the impact of solid tumor structure and interactions on the performance of drug nanocarriers have intensified this dissatisfaction. As such, the asymmetric growth and structural complexity of solid tumors, physicochemical properties of drug nanocarriers, EPR analytical combination tools, and EPR description goals should be considered to improve EPR-based cancer therapeutics. This review provides valuable insights into the limitations of the EPR effect in therapeutic efficacy and reports crucial perspectives on how the EPR effect can be modulated to improve the therapeutic effects of nanomedicine.

13.
Biomed Pharmacother ; 146: 112531, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34906771

RESUMO

Despite the promising medicinal properties, berberine (BBR), due to its relatively poor solubility in plasma, low bio-stability and limited bioavailability is not used broadly in clinical stages. Due to these drawbacks, drug delivery systems (DDSs) based on nanoscale natural polysaccharides, are applied to address these concerns. Natural polymers are biodegradable, non-immunogenic, biocompatible, and non-toxic agents that are capable of trapping large amounts of hydrophobic compounds in relatively small volumes. The use of nanoscale natural polysaccharide improves the stability and pharmacokinetics of the small molecules and, consequently, increases the therapeutic effects and reduces the side effects of the small molecules. Therefore, this paper presents an overview of the different methods used for increasing the BBR solubility and bioavailability. Afterwards, the pharmacodynamic and pharmacokinetic of BBR nanostructures were discussed followed by the introduction of natural polysaccharides of plant (cyclodextrines, glucomannan), the shells of crustaceans (chitosan), and the cell wall of brown marine algae (alginate)-based origins used to improve the dissolution rate of poorly soluble BBR and their anticancer and antibacterial properties. Finally, the anticancer and antibacterial mechanisms of free BBR and BBR nanostructures were surveyed. In conclusion, this review may pave the way for providing some useful data in the development of BBR-based platforms for clinical applications.


Assuntos
Berberina , Quitosana , Nanoestruturas , Antibacterianos/farmacologia , Berberina/química , Disponibilidade Biológica , Quitosana/química
14.
Talanta ; 224: 121805, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379031

RESUMO

Researchers have recently introduced some artificial enzymes based on nanomaterials that show significant catalytic activity relative to native enzymes called nanozyme. These nanozymes show superior performance than conventional catalysts and are considered as fascinating candidates for introducing the next generation of biomaterials in various industrial and biomedical fields. Recently, nanozymes have received a great deal of attention in biomedical applications due to their potential properties such as long-term stability, low cost, mass production capability, and controllable catalytic activity. Due to the intrinsic catalytic activity of nanoparticles (NPs) as nanozymes and their ability to be regulated in biomedical processes, this review paper focuses on the in vivo applications of nanozymes in biosensing and therapeutic activities. Despite the challenges and benefits of each approach, this paper attempts to provide an appropriate motivation for the classification of different nanozymes followed by their application in biomedical activities including in vivo biosensing and therapeutic potential in cancer, inflammation and microbial infections. Finally, some ongoing challenges and future perspective of nanozymes in biomedical application were surveyed. In conclusion, this paper may provide useful information regarding the development of nanozymes as promising platforms in biomedical settings due to expedited diagnosis, the advancement of multifactorial therapies and their pronounced stability.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Catálise , Humanos , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico
15.
Talanta ; 223(Pt 1): 121704, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33303154

RESUMO

The rapid outbreak of coronavirus disease 2019 (COVID-19) around the world is a tragic and shocking event that demonstrates the unpreparedness of humans to develop quick diagnostic platforms for novel infectious diseases. In fact, statistical reports of diagnostic tools show that their accuracy, specificity and sensitivity in the detection of COVID hampered by some challenges that can be eliminated by using nanoparticles (NPs). In this study, we aimed to present an overview on the most important ways to diagnose different kinds of viruses followed by the introduction of nanobiosensors. Afterward, some methods of COVID-19 detection such as imaging, laboratory and kit-based diagnostic tests are surveyed. Furthermore, nucleic acids/protein- and immunoglobulin (Ig)-based nanobiosensors for the COVID-19 detection infection are reviewed. Finally, current challenges and future perspective for the development of diagnostic or monitoring technologies in the control of COVID-19 are discussed to persuade the scientists in advancing their technologies beyond imagination. In conclusion, it can be deduced that as rapid COVID-19 detection infection can play a vital role in disease control and treatment, this review may be of great help for controlling the COVID-19 outbreak by providing some necessary information for the development of portable, accurate, selectable and simple nanobiosensors.


Assuntos
Técnicas Biossensoriais , COVID-19/diagnóstico , Nanotecnologia , Humanos , Kit de Reagentes para Diagnóstico , Sensibilidade e Especificidade
16.
Polymers (Basel) ; 13(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805240

RESUMO

The non-toxic inorganic antimicrobial agents iodine (I2) and copper (Cu) are interesting alternatives for biocidal applications. Iodine is broad-spectrum antimicrobial agent but its use is overshadowed by compound instability, uncontrolled iodine release and short-term effectiveness. These disadvantages can be reduced by forming complex-stabilized, polymeric polyiodides. In a facile, in-vitro synthesis we prepared the copper-pentaiodide complex [Cu(H2O)6(12-crown-4)5]I6 · 2I2, investigated its structure and antimicrobial properties. The chemical structure of the compound has been verified. We used agar well and disc-diffusion method assays against nine microbial reference strains in comparison to common antibiotics. The stable complex revealed excellent inhibition zones against C. albicans WDCM 00054, and strong antibacterial activities against several pathogens. [Cu(H2O)6(12-crown-4)5]I6 · 2I2 is a strong antimicrobial agent with an interesting crystal structure consisting of complexes located on an inversion center and surrounded by six 12-crown-4 molecules forming a cationic substructure. The six 12-crown-4 molecules form hydrogen bonds with the central Cu(H2O)6. The anionic substructure is a halogen bonded polymer which is formed by formal I5- repetition units. The topology of this chain-type polyiodide is unique. The I5- repetition units can be understood as a triodide anion connected to two iodine molecules.

17.
Int J Biol Macromol ; 181: 605-611, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33766591

RESUMO

The outbreaks of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in 2019, have highlighted the concerns about the lack of potential vaccines or antivirals approved for inhibition of CoVs infection. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) which is almost preserved across different viral species can be a potential target for development of antiviral drugs, including nucleoside analogues (NA). However, ExoN proofreading activity of CoVs leads to their protection from several NAs. Therefore, potential platforms based on the development of efficient NAs with broad-spectrum efficacy against human CoVs should be explored. This study was then aimed to present an overview on the development of NAs-based drug repurposing for targeting SARS-CoV-2 RdRp by computational analysis. Afterwards, the clinical development of some NAs including Favipiravir, Sofosbuvir, Ribavirin, Tenofovir, and Remdesivir as potential inhibitors of RdRp, were surveyed. Overall, exploring broad-spectrum NAs as promising inhibitors of RdRp may provide useful information about the identification of potential antiviral repurposed drugs against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Nucleosídeos/farmacologia , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Antivirais/farmacologia , COVID-19/virologia , Biologia Computacional/métodos , Reposicionamento de Medicamentos/métodos , Humanos , Modelos Moleculares , RNA Polimerase Dependente de RNA/antagonistas & inibidores
18.
J Biomol Struct Dyn ; 39(10): 3771-3779, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32397906

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative representative of a severe respiratory illness resulted in widespread human infections and deaths in nearly all of the countries since late 2019. There is no therapeutic FDA-approved drug against SARS-CoV-2 infection, although a combination of anti-viral drugs is directly being practiced in some countries. A broad-spectrum of antiviral agents are being currently evaluated in clinical trials, and in this review, we specifically focus on the application of Remdesivir (RVD) as a potential anti-viral compound against Middle East respiratory syndrome (MERS) -CoV, SARS-CoV and SARS-CoV-2. First, we overview the general information about SARS-CoV-2, followed by application of RDV as a nucleotide analogue which can potentially inhibits RNA-dependent RNA polymerase of COVs. Afterwards, we discussed the kinetics of SARS- or MERS-CoV proliferation in animal models which is significantly different compared to that in humans. Finally, some ongoing challenges and future perspective on the application of RDV either alone or in combination with other anti-viral agents against CoVs infection were surveyed to determine the efficiency of RDV in preclinical trials. As a result, this paper provides crucial evidence of the potency of RDV to prevent SARS-CoV-2 infections.Communicated by Ramaswamy H. Sarma.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , RNA Polimerase Dependente de RNA , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Antivirais/farmacologia , Reposicionamento de Medicamentos , Humanos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos
19.
J Biomol Struct Dyn ; 39(10): 3780-3786, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32397951

RESUMO

Researchers have reported some useful information about the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leading to CoV disease 2019 (COVID-19). Several studies have been performed in order to develop antiviral drugs, from which a few have been prescribed to patients. Also, several diagnostic tests have been designed to accelerate the process of identifying and treating COVID-19. It has been well-documented that the surface of host cells is covered by some receptors, known as angiotensin-converting enzyme 2 (ACE2), which mediates the binding and entry of CoV. After entering, the viral RNA interrupts the cell proliferation system to activate self-proliferation. However, having all the information about the outbreakof the SARS-COV-2, it is not still clear which factors determine the severity of lung and heart function impairment induced by COVID-19. A major step in exploring SARS-COV-2 pathogenesis is to determine the distribution of ACE2 in different tissues . In this review, the structure and origin of CoV, the role of ACE2 as a receptor of SARS-COV-2 on the surface of host cells, and the ACE2 distribution in different tissues with a focus on lung and cardiovascular system have been discussed. It was also revealed that acute and chronic cardiovascular diseases (CVDs) may result in the clinical severity of COVID-19. In conclusion, this review may provide useful information in developing some promising strategies to end up with a worldwide COVID-19 pandemic.Communicated by Ramaswamy H. Sarma.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19 , COVID-19/diagnóstico , Coração , Humanos , Pulmão , Pandemias , SARS-CoV-2 , Índice de Gravidade de Doença
20.
Biomimetics (Basel) ; 5(3)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957469

RESUMO

Antibiotic resistance is an eminent threat for the survival of mankind. Nosocomial infections caused by multidrug resistant microorganisms are a reason for morbidity and mortality worldwide. Plant-based antimicrobial agents are based on synergistic mechanisms which prevent resistance and have been used for centuries against ailments. We suggest the use of cost-effective, eco-friendly Aloe Vera Barbadensis Miller (AV)-iodine biomaterials as a new generation of antimicrobial agents. In a facile, one-pot synthesis, we encapsulated fresh AV gel with polyvinylpyrrolidone (PVP) as a stabilizing agent and incorporated iodine moieties in the form of iodine (I2) and sodium iodide (NaI) into the polymer matrix. Ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), microstructural analysis by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) verified the composition of AV-PVP-I2, AV-PVP-I2-NaI. AV, AV-PVP, AV-PVP-I2, AV-PVP-I2-NaI, and AV-PVP-NaI were tested in-vitro by disc diffusion assay and dip-coated on polyglycolic acid (PGA) sutures against ten microbial reference strains. All the tested pathogens were more susceptible towards AV-PVP-I2 due to the inclusion of "smart" triiodides with halogen bonding in vitro and on dip-coated sutures. The biocomplexes AV-PVP-I2, AV-PVP-I2-NaI showed remarkable antimicrobial properties. "Smart" biohybrids with triiodide inclusions have excellent antifungal and promising antimicrobial activities, with potential use against surgical site infections (SSI) and as disinfecting agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA