Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(23): 4272-4289.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37951215

RESUMO

Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated. We demonstrate that formaldehyde induces RNA-protein crosslinks (RPCs) that stall the ribosome and inhibit translation in human cells. RPCs in the messenger RNA (mRNA) are recognized by the translating ribosomes, marked by atypical K6-linked ubiquitylation catalyzed by the RING-in-between-RING (RBR) E3 ligase RNF14, and subsequently resolved by the ubiquitin- and ATP-dependent unfoldase VCP. Our findings uncover an evolutionary conserved formaldehyde-induced stress response pathway that protects cells against RPC accumulation in the cytoplasm, and they suggest that RPCs contribute to the cellular and tissue toxicity of reactive aldehydes.


Assuntos
RNA , Ubiquitina-Proteína Ligases , Humanos , RNA/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Formaldeído/toxicidade , Aldeídos/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
EMBO J ; 43(12): 2397-2423, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760575

RESUMO

The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Decitabina , Ubiquitina-Proteína Ligases , Decitabina/farmacologia , Humanos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Metilação de DNA/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Animais , Sumoilação/efeitos dos fármacos
3.
Biomacromolecules ; 24(8): 3680-3688, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37407505

RESUMO

Theoretical concepts from polymer physics are often used to describe intrinsically disordered proteins (IDPs). However, amino acid interactions within and between regions of the protein can lead to deviations from typical polymer scaling behavior and even to short-lived secondary structures. To investigate the key interactions in the dynamic IDP α-synuclein (αS) at the amino acid level, we conducted single-molecule fluorescence resonance energy transfer (smFRET) experiments and coarse-grained molecular dynamics (CG-MD) simulations. We find excellent agreement between experiments and simulations. Our results show that a physiological salt solution is a good solvent for αS and that the protein is highly dynamic throughout its entire chain, with local intra- and inter-regional interactions leading to deviations from global scaling. Specifically, we observe expansion in the C-terminal region, compaction in the NAC region, and a slightly smaller distance between the C- and N-termini than expected. Our simulations indicate that the compaction in the NAC region results from hydrophobic aliphatic contacts, mostly between valine and alanine residues, and cation-π interactions between lysine and tyrosine. In addition, hydrogen bonds also seem to contribute to the compaction of the NAC region. The expansion of the C-terminal region is due to intraregional electrostatic repulsion and increased chain stiffness from several prolines. Overall, our study demonstrates the effectiveness of combining smFRET experiments with CG-MD simulations to investigate the key interactions in highly dynamic IDPs at the amino acid level.


Assuntos
Proteínas Intrinsicamente Desordenadas , alfa-Sinucleína , alfa-Sinucleína/química , Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Aminoácidos , Conformação Proteica
4.
Front Zool ; 19(1): 32, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503565

RESUMO

BACKGROUND: Predator avoidance can have immense impacts on fitness, yet individual variation in the expression of anti-predator behaviour remains largely unexplained. Existing research investigating learning of novel predators has focused either on individuals or groups, but not both. Testing in individual settings allows evaluations of learning or personality differences, while testing in group settings makes it impossible to distinguish any such individual differences from social dynamics. In this study, we investigate the effect of social dynamics on individual anti-predator behaviour. We trained 15 captive ravens to recognize and respond to a novel experimental predator and then exposed them to this predator in both group and isolation settings across 1.5 years to tease apart individual differences from social effects and evaluate two hypotheses: (1) weaker anti-predator responses of some individuals in the group occurred, because they failed to recognize the experimental predator as a threat, leading to weak responses when separated, or (2) some individuals had learned the new threat, but their scolding intensity was repressed in the group trials due to social dynamics (such as dominance rank), leading to increased scolding intensity when alone. RESULTS: We found that dominance significantly influences scolding behaviour in the group trials; top-ranked individuals scold more and earlier than lower ranking ones. However, in the separation trials scolding duration is no longer affected by rank. CONCLUSIONS: We speculate that, while top-ranked individuals use their anti-predator responses to signal status in the group, lower-ranking ravens may be suppressed from, or are less capable of, performing intense anti-predator behaviour while in the group. This suggests that, in addition to its recruitment or predator-deterrent effects, alarm calling may serve as a marker of individual quality to conspecifics.

5.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270950

RESUMO

Finding dominating sets in graphs is very important in the context of numerous real-world applications, especially in the area of wireless sensor networks. This is because network lifetime in wireless sensor networks can be prolonged by assigning sensors to disjoint dominating node sets. The nodes of these sets are then used by a sleep-wake cycling mechanism in a sequential way; that is, at any moment in time, only the nodes from exactly one of these sets are switched on while the others are switched off. This paper presents a population-based iterated greedy algorithm for solving a weighted version of the maximum disjoint dominating sets problem for energy conservation purposes in wireless sensor networks. Our approach is compared to the ILP solver, CPLEX, which is an existing local search technique, and to our earlier greedy algorithm. This is performed through its application to 640 random graphs from the literature and to 300 newly generated random geometric graphs. The results show that our algorithm significantly outperforms the competitors.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos
6.
Learn Behav ; 49(1): 159-167, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33420703

RESUMO

Communication about threats including those posed by the presence of predators occurs mainly through acoustic signals called alarm calls. The comprehension of these calls by receivers and their rapid antipredator response are crucial in terms of survival. However, to avoid overreaction, individuals should evaluate whether or not an antipredator response is needed by paying attention to who is calling. For instance, we could expect adults to be more experienced with predator encounters than juveniles and thus elicit stronger antipredator responses in others when alarming. Similarly, we could expect a stronger response to alarm calls when more than one individual is calling. To test these assumptions, we applied a playback experiment to wild ravens, in which we manipulated the age class (adult or juvenile) and the number (one or two) of the callers. Our results revealed a seasonal effect of age class but no effect of number of callers. Specifically, the ravens responded with stronger antipredator behaviour (vigilance posture) towards alarm calls from adults as compared to juveniles in summer and autumn, but not in spring. We discuss alternative interpretations for this unexpected seasonal pattern and argue for more studies on call-based communication in birds to understand what type of information is relevant under which conditions.


Assuntos
Corvos , Comportamento Predatório , Vocalização Animal , Fatores Etários , Animais , Estações do Ano
7.
Molecules ; 26(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34641294

RESUMO

Supramolecular protein complexes are the corner stone of biological processes; they are essential for many biological functions. Unraveling the interactions responsible for the (dis)assembly of these complexes is required to understand nature and to exploit such systems in future applications. Virus capsids are well-defined assemblies of hundreds of proteins and form the outer shell of non-enveloped viruses. Due to their potential as a drug carriers or nano-reactors and the need for virus inactivation strategies, assessing the intactness of virus capsids is of great interest. Current methods to evaluate the (dis)assembly of these protein assemblies are experimentally demanding in terms of instrumentation, expertise and time. Here we investigate a new strategy to monitor the disassembly of fluorescently labeled virus capsids. To monitor surfactant-induced capsid disassembly, we exploit the complex photophysical interplay between multiple fluorophores conjugated to capsid proteins. The disassembly of the capsid changes the photophysical interactions between the fluorophores, and this can be spectrally monitored. The presented data show that this low complexity method can be used to study and monitor the disassembly of supramolecular protein complexes like virus capsids. However, the range of labeling densities that is suitable for this assay is surprisingly narrow.


Assuntos
Capsídeo/química , Corantes Fluorescentes/química , Tensoativos/efeitos adversos , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Conformação Proteica , Inativação de Vírus
8.
Arch Biochem Biophys ; 677: 108163, 2019 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-31672499

RESUMO

Membrane proteins control and shape membrane trafficking processes. The role of protein structure in shaping cellular membranes is well established. However, a significant fraction of membrane proteins is disordered or contains long disordered regions. It becomes more and more clear that these disordered regions contribute to the function of membrane proteins. While the fold of a structured protein is essential for its function, being disordered seems to be a crucial feature of membrane bound intrinsically disordered proteins and protein regions. Here we outline the motifs that encode function in disordered proteins and discuss how these functional motifs enable disordered proteins to modulate membrane properties. These changes in membrane properties facilitate and regulate membrane trafficking processes which are highly abundant in eukaryotes.


Assuntos
Membrana Celular/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Membrana Celular/química , Humanos , Proteínas Intrinsicamente Desordenadas/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Transição de Fase , Domínios Proteicos
9.
Biomacromolecules ; 20(3): 1217-1223, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30653915

RESUMO

Nature has developed different protein mediated mechanisms to remodel cellular membranes. One of the proteins that is implicated in these processes is α-synuclein (αS). Here we investigate if besides αS's membrane bound amphipathic helix the disordered, solvent exposed tail of the protein contributes to membrane reshaping. We produced αS variants with elongated or truncated disordered solvent exposed domains. We observe a transformation of opaque multi lamellar vesicle solutions into nonscattering solutions containing smaller structures upon addition of all αS variants. Experimental data combined with model calculations show that the cooperation of helix insertion and lateral pressure exerted by the disordered domain makes the full length protein decidedly more efficient in membrane remodeling than the truncated version. Using disordered domains may not only be cost-efficient, it may also add a new level of control over vesicle fusion/fission by expansion or compaction of the domain.


Assuntos
Membrana Celular , Pressão , Proteínas de Membrana/química , Ligação Proteica , Domínios Proteicos , alfa-Sinucleína/química
10.
Nature ; 491(7423): 232-4, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23135468

RESUMO

Non-invasive optical imaging techniques, such as optical coherence tomography, are essential diagnostic tools in many disciplines, from the life sciences to nanotechnology. However, present methods are not able to image through opaque layers that scatter all the incident light. Even a very thin layer of a scattering material can appear opaque and hide any objects behind it. Although great progress has been made recently with methods such as ghost imaging and wavefront shaping, present procedures are still invasive because they require either a detector or a nonlinear material to be placed behind the scattering layer. Here we report an optical method that allows non-invasive imaging of a fluorescent object that is completely hidden behind an opaque scattering layer. We illuminate the object with laser light that has passed through the scattering layer. We scan the angle of incidence of the laser beam and detect the total fluorescence of the object from the front. From the detected signal, we obtain the image of the hidden object using an iterative algorithm. As a proof of concept, we retrieve a detailed image of a fluorescent object, comparable in size (50 micrometres) to a typical human cell, hidden 6 millimetres behind an opaque optical diffuser, and an image of a complex biological sample enclosed between two opaque screens. This approach to non-invasive imaging through strongly scattering media can be generalized to other contrast mechanisms and geometries.


Assuntos
Tomografia Óptica/métodos , Convallaria , Difusão , Fluorescência , Lasers , Caules de Planta
11.
Opt Express ; 24(8): 8594-619, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137296

RESUMO

We present a method to discriminate between analytes based on their size using multiple wavelengths in a Young interferometer. We measured the response of two wavelengths when adding 85 nm beads (representing specific binding), protein A (representing non-specific binding) and D-glucose (inducing a bulk change) to our sensor. Next, the measurements are analysed using a approach based on theoretical analysis, and a ratio-based analysis approach to discriminate between bulk changes and the binding of the different sized substances. Moreover, we were able to discriminate binding of 85 nm beads from binding of protein A (~2 nm) in a blind experiment using the ratio-based approach. This can for example be used to discriminate specific analyte binding of larger particles from non-specific binding of smaller particles. Therefore, we believe that by adding size-selectivity we can strongly improve the performance of the Young interferometer sensor and integrated optical interferometric sensors in general.

12.
Langmuir ; 32(35): 8803-11, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27525503

RESUMO

We describe a novel combination of a responsive polymer brush and a fluorescently labeled biomolecule, where the position of the biomolecule can be switched from inside to outside the brush and vice versa by a change in pH. For this, we grafted ultrathin, amino-terminated poly(acrylic acid) brushes to glass and silicon substrates. Individual bovine serum albumin (BSA) molecules labeled with fluorophore ATTO 488 were covalently end-attached to the polymers in this brush using a bis-N-succinimidyl-(pentaethylene glycol) linker. We investigated the dry layer properties of the brush-protein ensemble, and it is swelling behavior using spectroscopic ellipsometry. Total internal reflection fluorescence (TIRF) microscopy enabled us to study the distance-dependent switching of the fluorescently labeled protein molecules. The fluorescence emission from the labeled proteins ceased (out-state) when the polymer chains stretched away from the interface under basic pH conditions, and fluorescence recurred (in-state) when the chains collapsed under acidic conditions. Moreover, TIRF allowed us to study the fluorescence switching behavior of fluorescently labeled BSA molecules down to the single-molecule level, and we demonstrate that this switching is fast but that the exact intensity during the in-state is the result of a more random process. Control experiments verify that the switching behavior is directly correlated to the responsive behavior of the polymer brush. We propose this system as a platform for switchable sensor applications but also as a method to study the swelling and collapse of individual polymer chains in a responsive polymer brush.

13.
Small ; 11(19): 2257-62, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25641873

RESUMO

Multivalent membrane binding sites on the α-synuclein oligomer result in clustering of vesicles and hemifusion of negatively charged model membranes. These multivalent, biological nanoparticles are reminiscent of inorganic nanoparticles in their interactions with membranes. Alpha-synuclein oligomers induce lipid exchange efficiently, with fewer than 10 oligomers/vesicle required to complete hemifusion. No full fusion or vesicle content mixing is observed.


Assuntos
Amiloide/química , Nanopartículas/química , Multimerização Proteica , Lipossomas Unilamelares/química , alfa-Sinucleína/química , Corantes Fluorescentes/química , Fosfatidilgliceróis/química
14.
Biophys J ; 106(2): 440-6, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24461019

RESUMO

Conventional methods to determine the aggregation number, that is, the number of monomers per oligomer, struggle to yield reliable results for large protein aggregates, such as amyloid oligomers. We have previously demonstrated the use of a combination of single-molecule photobleaching and substoichiometric fluorescent labeling to determine the aggregation number of oligomers of human α-synuclein, implicated in Parkinson's disease. We show here that this approach is capable of accurately resolving mixtures of multiple distinct molecular species present in the same sample of dopamine-induced α-synuclein oligomers, and that we can determine the respective aggregation numbers of each species from a single histogram of bleaching steps. We found two distinct species with aggregation numbers of 15-19 monomers and 34-38 monomers. These results show that this single-molecule approach allows for the systematic study of the aggregation numbers of complex supramolecular assemblies formed under different aggregation conditions.


Assuntos
Dopamina/farmacologia , Fotodegradação , Multimerização Proteica/efeitos dos fármacos , alfa-Sinucleína/química , Corantes Fluorescentes/química , Humanos , Estrutura Quaternária de Proteína
15.
Biomacromolecules ; 15(2): 558-63, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24359088

RESUMO

The virus-like particle (VLP) of the Cowpea Chlorotic Mottle Virus (CCMV) has often been used to encapsulate foreign cargo. Here we show two different rational design approaches, covalent and noncovalent, for loading teal fluorescent proteins (TFP) into the VLP. The covalent loading approach allows us to gain control over capsid loading on a molecular level. The achieved loading control is used to accurately predict the loading of cargo into CCMV VLP. The effects of molecular confinement were compared for the differently loaded VLPs created with the covalent method. We see that the loading of more than 10 fluorescent proteins in the 18 nm internal cavity of the CCMV capsid gives rise to a maximum efficiency of homo-FRET between the loaded proteins, as measured by fluorescence anisotropy. This shows that already at low levels of VLP loading molecular crowding starts to play a role.


Assuntos
Proteínas Luminescentes/química , Tombusviridae/química , Vacinas de Partículas Semelhantes a Vírus/química , Clonagem Molecular , Proteínas Luminescentes/genética , Proteínas Luminescentes/isolamento & purificação , Modelos Moleculares , Mutagênese Sítio-Dirigida , Tamanho da Partícula , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Propriedades de Superfície
16.
ACS Chem Neurosci ; 15(9): 1926-1936, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635928

RESUMO

The aggregation of α-synuclein (αS) plays a key role in Parkinson's disease (PD) etiology. While the onset of PD is age-related, the cellular quality control system appears to regulate αS aggregation throughout most human life. Intriguingly, the protein 14-3-3τ has been demonstrated to delay αS aggregation and the onset of PD in various models. However, the molecular mechanisms behind this delay remain elusive. Our study confirms the delay in αS aggregation by 14-3-3τ, unveiling a concentration-dependent relation. Utilizing microscale thermophoresis (MST) and single-molecule burst analysis, we quantified the early αS multimers and concluded that these multimers exhibit properties that classify them as nanoscale condensates that form in a cooperative process, preceding the critical nucleus for fibril formation. Significantly, the αS multimer formation mechanism changes dramatically in the presence of scaffold protein 14-3-3τ. Our data modeling suggests that 14-3-3τ modulates the multimerization process, leading to the creation of mixed multimers or co-condensates, comprising both αS and 14-3-3τ. These mixed multimers form in a noncooperative process. They are smaller, more numerous, and distinctively not on the pathway to amyloid formation. Importantly, 14-3-3τ thus acts in the very early stage of αS multimerization, ensuring that αS does not aggregate but remains soluble and functional. This offers long-sought novel entries for the pharmacological modulation of PD.


Assuntos
Proteínas 14-3-3 , Amiloide , Multimerização Proteica , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Proteínas 14-3-3/metabolismo , Humanos , Amiloide/metabolismo , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo
17.
Phys Rev Lett ; 110(6): 066601, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23432284

RESUMO

Half-metallic ferromagnetism stands for the technologically sought-after metallicity with 100% spin polarization. Electrical transport should, in principle, sensitively probe half-metallic ferromagnetism, since electron-magnon scattering processes are expected to be absent, with clear-cut consequences for the resistivity and the magnetoresistance. Here we present electrical transport data for single-crystalline Co(2)FeSi, a candidate half-metallic ferromagnet Heusler compound. The data reveal a textbooklike exponential suppression of the electron-magnon scattering rate with decreasing temperature which provides strong evidence that this material indeed possesses perfect spin polarization at low temperature. However, the energy scale for thermally activated spin-flip scattering is relatively low (activation gap Δ≈100 K) which has decisive influence on the magnetoresistance and the anomalous Hall effect, which exhibit strong qualitative changes when crossing T≈100 K.

18.
J Phys Chem B ; 127(8): 1735-1743, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36795058

RESUMO

Amyloid fibrils of the protein α-synuclein (αS) have recently been identified as a biomarker for Parkinson's disease (PD). To detect the presence of these amyloid fibrils, seed amplification assays (SAAs) have been developed. SAAs allow for the detection of αS amyloid fibrils in biomatrices such as cerebral spinal fluid and are promising for PD diagnosis by providing a dichotomous (yes/no) response. The additional quantification of the number of αS amyloid fibrils may enable clinicians to evaluate and follow the disease progression and severity. Developing quantitative SAAs has been shown to be challenging. Here, we report on a proof-of-principle study on the quantification of αS fibrils in fibril-spiked model solutions of increasing compositional complexity including blood serum. We show that parameters derived from standard SAAs can be used for fibril quantification in these solutions. However, interactions between the monomeric αS reactant that is used for amplification and biomatrix components such as human serum albumin have to be taken into account. We demonstrate that quantification of fibrils is possible even down to the single fibril level in a model sample consisting of fibril-spiked diluted blood serum.


Assuntos
Amiloide , Doença de Parkinson , Humanos , Amiloide/metabolismo , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo
19.
Nanoscale ; 15(45): 18337-18346, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37921451

RESUMO

The presence of deposits of alpha-synuclein (αS) fibrils in the cells of the brain is a hallmark of several α-synucleinopathies, including Parkinson's disease. As most disease cases are not familial, it is likely that external factors play a role in the disease onset. One of the external factors that may influence the disease onset is viral infection. It has recently been shown in in vitro assays that in the presence of SARS-Cov-2 N-protein, αS fibril formation is faster and proceeds in an unusual two-step aggregation process. Here, we show that faster fibril formation is not due to the SARS-CoV-2 N-protein-catalysed formation of an aggregation-prone nucleus. Instead, aggregation starts with the formation of a population of mixed αS/N-protein fibrils with low affinity for αS. Mixed amyloid fibrils, composed of two different proteins, have not been observed before. After the depletion of N-protein, fibril formation comes to a halt, until a slow transformation into fibrils with characteristics of a pure αS fibril strain occurs. This transformation into a strain of αS fibrils subsequently results in a second phase of fibril growth until a new equilibrium is reached. We hypothesize that this fibril strain transformation may be of relevance in the cell-to-cell spread of the αS pathology and disease onset.


Assuntos
COVID-19 , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , SARS-CoV-2 , Doença de Parkinson/metabolismo , Encéfalo/metabolismo , Amiloide/metabolismo
20.
Phys Rev Lett ; 109(20): 203601, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23215487

RESUMO

We have studied the influence of the local density of optical states (LDOS) on the rate and efficiency of Förster resonance energy transfer (FRET) from a donor to an acceptor. The donors and acceptors are dye molecules that are separated by a short strand of double-stranded DNA. The LDOS is controlled by carefully positioning the FRET pairs near a mirror. We find that the energy transfer efficiency changes with LDOS, and that, in agreement with theory, the energy transfer rate is independent of the LDOS, which allows one to quantitatively control FRET systems in a new way. Our results imply a change in the characteristic Förster distance, in contrast to common lore that this distance is fixed for a given FRET pair.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Óptica e Fotônica/métodos , DNA/química , Corantes Fluorescentes/química , Polimetil Metacrilato/química , Álcool de Polivinil/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA