Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(6): e112558, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36762431

RESUMO

Moraxella catarrhalis is an important human respiratory pathogen and a major causative agent of otitis media and chronic obstructive pulmonary disease. Toll-like receptors contribute to, but cannot fully account for, the complexity of the immune response seen in M. catarrhalis infection. Using primary mouse bone marrow-derived macrophages to examine the host response to M. catarrhalis infection, our global transcriptomic and targeted cytokine analyses revealed activation of immune signalling pathways by both membrane-bound and cytosolic pattern-recognition receptors. We show that M. catarrhalis and its outer membrane vesicles or lipooligosaccharide (LOS) can activate the cytosolic innate immune sensor caspase-4/11, gasdermin-D-dependent pyroptosis, and the NLRP3 inflammasome in human and mouse macrophages. This pathway is initiated by type I interferon signalling and guanylate-binding proteins (GBPs). We also show that inflammasomes and GBPs, particularly GBP2, are required for the host defence against M. catarrhalis in mice. Overall, our results reveal an essential role for the interferon-inflammasome axis in cytosolic recognition and immunity against M. catarrhalis, providing new molecular targets that may be used to mitigate pathological inflammation triggered by this pathogen.


Assuntos
Caspases , Inflamassomos , Camundongos , Humanos , Animais , Caspases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Moraxella catarrhalis/metabolismo , Proteínas de Transporte , Imunidade Inata
2.
Immunol Cell Biol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39157866

RESUMO

Toll-like receptors (TLRs) are innate immune sensors for the presence of pathogens and endogenous danger signals. TLR activation results in conserved intracellular signaling events that orchestrate inflammation and antimicrobial defense. While the identity and interplay of key TLR signaling components are well established, how these largely cytosolic proteins are physically connected is not well understood. For the activation of conserved intracellular signaling events, most TLRs engage the adapter MyD88 (myeloid differentiation primary response 88), which assembles into higher-order protein complexes, myddosomes. In their recent publication, Fisch et al. present evidence that oligomeric myddosomes detach from initiating TLRs and evolve into larger scaffolds that dynamically assemble not only proximal but also distal cytosolic elements required to execute the entire cascade of the TLR-MyD88 signaling pathway. Coinciding with decline in TLR signaling over time, myddosomes progressively recruit autophagy machinery that mediates myddosome clearance. These findings expand the current understanding of TLR signaling by positioning myddosomes as the central structural element that physically assembles the key executors and regulators of TLR-MyD88-dependent intracellular signaling cascades.

3.
PLoS Pathog ; 18(1): e1010166, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007292

RESUMO

A hallmark of Listeria (L.) monocytogenes pathogenesis is bacterial escape from maturing entry vacuoles, which is required for rapid bacterial replication in the host cell cytoplasm and cell-to-cell spread. The bacterial transcriptional activator PrfA controls expression of key virulence factors that enable exploitation of this intracellular niche. The transcriptional activity of PrfA within infected host cells is controlled by allosteric coactivation. Inhibitory occupation of the coactivator site has been shown to impair PrfA functions, but consequences of PrfA inhibition for L. monocytogenes infection and pathogenesis are unknown. Here we report the crystal structure of PrfA with a small molecule inhibitor occupying the coactivator site at 2.0 Å resolution. Using molecular imaging and infection studies in macrophages, we demonstrate that PrfA inhibition prevents the vacuolar escape of L. monocytogenes and enables extensive bacterial replication inside spacious vacuoles. In contrast to previously described spacious Listeria-containing vacuoles, which have been implicated in supporting chronic infection, PrfA inhibition facilitated progressive clearance of intracellular L. monocytogenes from spacious vacuoles through lysosomal degradation. Thus, inhibitory occupation of the PrfA coactivator site facilitates formation of a transient intravacuolar L. monocytogenes replication niche that licenses macrophages to effectively eliminate intracellular bacteria. Our findings encourage further exploration of PrfA as a potential target for antimicrobials and highlight that intra-vacuolar residence of L. monocytogenes in macrophages is not inevitably tied to bacterial persistence.


Assuntos
Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Macrófagos/microbiologia , Vacúolos/microbiologia , Virulência/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Immunology ; 169(1): 13-26, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36370035

RESUMO

Granulomas are key histopathological features of Mycobacterium tuberculosis (Mtb) infection, with complex roles in pathogen control and dissemination. Thus, understanding drivers and regulators of granuloma formation is important for improving tuberculosis diagnosis, treatment, and prevention. Yet, molecular mechanisms underpinning granuloma formation and dynamics remain poorly understood. Here we used low-dose Mtb infection of C57BL/6 mice, which elicits structured lung granulomas composed of central macrophage clusters encased by a lymphocyte mantle, alongside the disorganized lymphocyte and macrophage clusters commonly observed in Mtb-infected mice. Using gene-deficient mice, we observed that Toll-like receptor (TLR) 2 and the TLR-related Radioprotective 105 kDa protein (RP105) contributed to the extent and spatial positioning of pathology in infected lung tissues, consistent with functional cooperation between TLR2 and RP105 in the innate immune recognition of Mtb. In mice infected with the highly virulent Mtb clinical isolate HN878, TLR2, but not RP105, positively regulated the extent of central macrophage regions within structured granulomas. Moreover, RP105, but not TLR2, promoted the formation of structured lung granulomas, suggesting that the functions of RP105 as an innate immune sensor for Mtb reach beyond its roles as TLR2 co-receptor. TLR2 and RP105 contributions to lung pathology are governed by Mtb biology, as neither receptor affected the frequency or architecture of structured granulomas in mice infected with the reference strain Mtb H37Rv. Thus, by revealing distinctive as well as cooperative functions of TLR2 and RP105 in lung pathology, our data identify TLRs as molecular determinants of TB granuloma formation and architecture, and expand understanding of how interactions between innate immune receptors and Mtb shape TB disease manifestation.


Assuntos
Mycobacterium tuberculosis , Animais , Camundongos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Camundongos Endogâmicos C57BL , Receptores Toll-Like , Pulmão , Receptores Imunológicos , Granuloma , Imunidade Inata
5.
PLoS Pathog ; 17(4): e1009377, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33857251

RESUMO

Tuberculosis (TB) remains an infectious disease of global significance and a leading cause of death in low- and middle-income countries. Significant effort has been directed towards understanding Mycobacterium tuberculosis genomics, virulence, and pathophysiology within the framework of Koch postulates. More recently, the advent of "-omics" approaches has broadened our appreciation of how "commensal" microbes have coevolved with their host and have a central role in shaping health and susceptibility to disease. It is now clear that there is a diverse repertoire of interactions between the microbiota and host immune responses that can either sustain or disrupt homeostasis. In the context of the global efforts to combatting TB, such findings and knowledge have raised important questions: Does microbiome composition indicate or determine susceptibility or resistance to M. tuberculosis infection? Is the development of active disease or latent infection upon M. tuberculosis exposure influenced by the microbiome? Does microbiome composition influence TB therapy outcome and risk of reinfection with M. tuberculosis? Can the microbiome be actively managed to reduce risk of M. tuberculosis infection or recurrence of TB? Here, we explore these questions with a particular focus on microbiome-immune interactions that may affect TB susceptibility, manifestation and progression, the long-term implications of anti-TB therapy, as well as the potential of the host microbiome as target for clinical manipulation.


Assuntos
Antituberculosos/uso terapêutico , Disbiose/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Humanos , Microbiota/efeitos dos fármacos , Microbiota/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia
6.
Immunol Cell Biol ; 99(10): 1067-1076, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555867

RESUMO

The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in the host control of mycobacterial infections. Expression and release of TNF are tightly regulated, yet the molecular mechanisms that control the release of TNF by mycobacteria-infected host cells, in particular macrophages, are incompletely understood. Rab GTPases direct the transport of intracellular membrane-enclosed vesicles and are important regulators of macrophage cytokine secretion. Rab6b is known to be predominantly expressed in the brain where it functions in retrograde transport and anterograde vesicle transport for exocytosis. Whether it executes similar functions in the context of immune responses is unknown. Here we show that Rab6b is expressed by primary mouse macrophages, where it localized to the Golgi complex. Infection with Mycobacterium bovis bacille Calmette-Guérin (BCG) resulted in dynamic changes in Rab6b expression in primary mouse macrophages in vitro as well as in organs from infected mice in vivo. We further show that Rab6b facilitated TNF release by M. bovis BCG-infected macrophages, in the absence of discernible impact on Tnf messenger RNA and intracellular TNF protein expression. Our observations identify Rab6b as a positive regulator of M. bovis BCG-induced TNF trafficking and secretion by macrophages and positions Rab6b among the molecular machinery that orchestrates inflammatory cytokine responses by macrophages.


Assuntos
Complexo de Golgi/imunologia , Macrófagos/imunologia , Infecções por Mycobacterium , Fator de Necrose Tumoral alfa/imunologia , Proteínas rab de Ligação ao GTP/imunologia , Animais , Camundongos , Infecções por Mycobacterium/imunologia , Mycobacterium bovis
7.
FASEB J ; 34(12): 15961-15974, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070374

RESUMO

Focal and segmental glomerulosclerosis (FSGS) is a histological pattern frequently found in patients with nephrotic syndrome that often progress to end-stage kidney disease. The initial step in development of this histologically defined entity is injury and ultimately depletion of podocytes, highly arborized interdigitating cells on the glomerular capillaries with important function for the glomerular filtration barrier. Since there are still no causal therapeutic options, animal models are needed to develop new treatment strategies. Here, we present an FSGS-like model in zebrafish larvae, an eligible vertebrate model for kidney research. In a transgenic zebrafish strain, podocytes were depleted, and the glomerular response was investigated by histological and morphometrical analysis combined with immunofluorescence staining and ultrastructural analysis by transmission electron microscopy. By intravenous injection of fluorescent high-molecular weight dextran, we confirmed leakage of the size selective filtration barrier. Additionally, we observed severe podocyte foot process effacement of remaining podocytes, activation of proximal tubule-like parietal epithelial cells identified by ultrastructural cytomorphology, and expression of proximal tubule markers. These activated cells deposited extracellular matrix on the glomerular tuft which are all hallmarks of FSGS. Our findings indicate that glomerular response to podocyte depletion in larval zebrafish resembles human FSGS in several important characteristics. Therefore, this model will help to investigate the disease development and the effects of potential drugs in a living organism.


Assuntos
Glomerulosclerose Segmentar e Focal/patologia , Glomérulos Renais/patologia , Larva/patogenicidade , Podócitos/patologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Células Epiteliais/patologia , Mamíferos , Síndrome Nefrótica/patologia , Peixe-Zebra
8.
J Org Chem ; 86(16): 11011-11018, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33320674

RESUMO

Cultivation profiling followed by chemical analysis of Streptomyces lincolnensis yielded four new isomeric bianthracenes, lincolnenins A-D (1-4), with relative stereostructures assigned on the basis of detailed spectroscopic analysis. Lincolnenins A (1) and B (2) exhibit restricted rotation about alternate bianthracene 9-9' and 9-8' bridges, respectively, and exist as single atropisomers, whereas C (3) and D (4) are thermally interconvertible atropisomers sharing a common 8-8' bianthracene bridge. Absolute configurations were assigned to 1-4 on the basis of diagnostic ROESY correlations and ECD calculations, whereas acid-mediated dehydration of 1 led to formation and revision of the absolute configuration of the biosynthetically related known Streptomyces antibiotic, setomimycin (5). Lincolnenin A (1) exhibited significant bactericidal activity against multiple susceptible and drug-resistant Gram-positive pathogens (MIC99 < 2.0 µM), including Mycobacterium tuberculosis H37Ra (MIC99 = 0.9 µM).


Assuntos
Mycobacterium tuberculosis , Streptomyces , Antibacterianos/farmacologia
9.
Immunol Cell Biol ; 98(7): 528-539, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32686869

RESUMO

Mitochondria have a multitude of functions, including energy generation and cell signaling. Recent evidence suggests that mitochondrial dynamics (i.e. the balance between mitochondrial fission and fusion) also regulate immune functions. Here, we reveal that lipopolysaccharide (LPS) stimulation increases mitochondrial numbers in mouse bone marrow-derived macrophages (BMMs) and human monocyte-derived macrophages. In BMMs, this response requires Toll-like receptor 4 (Tlr4) and the TLR adaptor protein myeloid differentiation primary response 88 (MyD88) but is independent of mitochondrial biogenesis. Consistent with this phenomenon being a consequence of mitochondrial fission, the dynamin-related protein 1 (Drp1) GTPase that promotes mitochondrial fission is enriched on mitochondria in LPS-activated macrophages and is required for the LPS-mediated increase in mitochondrial numbers in both BMMs and mouse embryonic fibroblasts. Pharmacological agents that skew toward mitochondrial fusion also abrogated this response. LPS triggered acute Drp1 phosphorylation at serine 635 (S635), followed by sustained Drp1 dephosphorylation at serine 656 (S656), in BMMs. LPS-induced S656 dephosphorylation was abrogated in MyD88-deficient BMMs, suggesting that this post-translational modification is particularly important for Tlr4-inducible fission. Pharmacological or genetic targeting of Tlr4-inducible fission had selective effects on inflammatory mediator production, with LPS-inducible mitochondrial fission promoting the expression and/or secretion of a subset of inflammatory mediators in BMMs and mouse embryonic fibroblasts. Thus, triggering of Tlr4 results in MyD88-dependent activation of Drp1, leading to inducible mitochondrial fission and subsequent inflammatory responses in macrophages.


Assuntos
Dinaminas/metabolismo , Lipopolissacarídeos , Macrófagos/imunologia , Dinâmica Mitocondrial , Animais , Células Cultivadas , Fibroblastos , Humanos , Camundongos , Proteínas Mitocondriais , Fator 88 de Diferenciação Mieloide , Receptor 4 Toll-Like
10.
Nature ; 507(7493): 462-70, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24670764

RESUMO

Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.


Assuntos
Atlas como Assunto , Anotação de Sequência Molecular , Regiões Promotoras Genéticas/genética , Transcriptoma/genética , Animais , Linhagem Celular , Células Cultivadas , Análise por Conglomerados , Sequência Conservada/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Genes Essenciais/genética , Genoma/genética , Humanos , Camundongos , Fases de Leitura Aberta/genética , Especificidade de Órgãos , RNA Mensageiro/análise , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica/genética
11.
Twin Res Hum Genet ; 23(4): 204-213, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32755526

RESUMO

Previous genetic association studies have failed to identify loci robustly associated with sepsis, and there have been no published genetic association studies or polygenic risk score analyses of patients with septic shock, despite evidence suggesting genetic factors may be involved. We systematically collected genotype and clinical outcome data in the context of a randomized controlled trial from patients with septic shock to enrich the presence of disease-associated genetic variants. We performed genomewide association studies of susceptibility and mortality in septic shock using 493 patients with septic shock and 2442 population controls, and polygenic risk score analysis to assess genetic overlap between septic shock risk/mortality with clinically relevant traits. One variant, rs9489328, located in AL589740.1 noncoding RNA, was significantly associated with septic shock (p = 1.05 × 10-10); however, it is likely a false-positive. We were unable to replicate variants previously reported to be associated (p < 1.00 × 10-6 in previous scans) with susceptibility to and mortality from sepsis. Polygenic risk scores for hematocrit and granulocyte count were negatively associated with 28-day mortality (p = 3.04 × 10-3; p = 2.29 × 10-3), and scores for C-reactive protein levels were positively associated with susceptibility to septic shock (p = 1.44 × 10-3). Results suggest that common variants of large effect do not influence septic shock susceptibility, mortality and resolution; however, genetic predispositions to clinically relevant traits are significantly associated with increased susceptibility and mortality in septic individuals.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Choque Séptico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Choque Séptico/genética , Choque Séptico/mortalidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-30602509

RESUMO

Wollamides are cyclic hexapeptides, recently isolated from an Australian soil Streptomyces isolate, that exhibit promising in vitro antimycobacterial activity against Mycobacterium bovis Bacille Calmette Guérin without displaying cytotoxicity against a panel of mammalian cells. Here, we report the synthesis and antimycobacterial activity of 36 new synthetic wollamides, collated with all known synthetic and natural wollamides, to reveal structure characteristics responsible for in vitro growth-inhibitory activity against Mycobacterium tuberculosis (H37Rv, H37Ra, CDC1551, HN878, and HN353). The most potent antimycobacterial wollamides were those where residue VI d-Orn (wollamide B) was replaced by d-Arg (wollamide B1) or d-Lys (wollamide B2), with all activity being lost when residue VI was replaced by Gly, l-Arg, or l-Lys (wollamide B3). Substitution of other amino acid residues mainly reduced or ablated antimycobacterial activity. Significantly, whereas wollamide B2 was the most potent in restricting M. tuberculosisin vitro, wollamide B1 restricted M. tuberculosis intracellular burden in infected macrophages. Wollamide B1 synergized with pretomanid (PA-824) in inhibiting M. tuberculosisin vitro growth but did not antagonize prominent first- and second-line tuberculosis antibiotics. Furthermore, wollamide B1 exerted bactericidal activity against nonreplicating M. tuberculosis and impaired growth of multidrug- and extensively drug-resistant clinical isolates. In vivo pharmacokinetic profiles for wollamide B1 in rats and mice encourage further optimization of the wollamide pharmacophore for in vivo bioavailability. Collectively, these observations highlight the potential of the wollamide antimycobacterial pharmacophore.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Tuberculose/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Farmacorresistência Bacteriana Múltipla/genética , Células Hep G2 , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/isolamento & purificação , Ratos , Relação Estrutura-Atividade
13.
Cell Tissue Res ; 377(2): 167-176, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30868340

RESUMO

The solute carrier (SLC) group of membrane transport proteins includes about 400 members organized into more than 50 families. The SLC family that comprises nucleoside-sugar transporters is referred to as SLC35. One of the members of this family is SLC35F1. The function of SLC35F1 is still unknown; however, recent studies demonstrated that SLC35F1 mRNA is highly expressed in the brain and in the kidney. Therefore, we examine the distribution of Slc35f1 protein in the murine forebrain using immunohistochemistry. We could demonstrate that Slc35f1 is highly expressed in the adult mouse brain in a variety of different brain structures, including the cortex, hippocampus, amygdala, thalamus, basal ganglia, and hypothalamus. To examine the possible roles of Slc35f1 and its subcellular localization, we used an in vitro glioblastoma cell line expressing Slc35f1. Co-labeling experiments were performed to reveal the subcellular localization of Slc35f1. Our results indicate that Slc35f1 neither co-localizes with markers for the Golgi apparatus nor with markers for the endoplasmic reticulum. Time-lapse microscopy of living cells revealed that Slc35f1-positive structures are highly dynamic and resemble vesicles. Using super-resolution microscopy, these Slc35f1-positive spots clearly co-localize with the recycling endosome marker Rab11.


Assuntos
Encéfalo/metabolismo , Encéfalo/ultraestrutura , Proteínas Carreadoras de Solutos/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas , Proteínas rab de Ligação ao GTP/metabolismo
14.
J Am Soc Nephrol ; 29(6): 1662-1678, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29720549

RESUMO

Background Podocyte loss and effacement of interdigitating podocyte foot processes are the major cause of a leaky filtration barrier and ESRD. Because the complex three-dimensional morphology of podocytes depends on the actin cytoskeleton, we studied the role in podocytes of the actin bundling protein palladin, which is highly expressed therein.Methods We knocked down palladin in cultured podocytes by siRNA transfection or in zebrafish embryos by morpholino injection and studied the effects by immunofluorescence and live imaging. We also investigated kidneys of mice with podocyte-specific knockout of palladin (PodoPalld-/- mice) by immunofluorescence and ultrastructural analysis and kidney biopsy specimens from patients by immunostaining for palladin.Results Compared with control-treated podocytes, palladin-knockdown podocytes had reduced actin filament staining, smaller focal adhesions, and downregulation of the podocyte-specific proteins synaptopodin and α-actinin-4. Furthermore, palladin-knockdown podocytes were more susceptible to disruption of the actin cytoskeleton with cytochalasin D, latrunculin A, or jasplakinolide and showed altered migration dynamics. In zebrafish embryos, palladin knockdown compromised the morphology and dynamics of epithelial cells at an early developmental stage. Compared with PodoPalld+/+ controls, PodoPalld-/- mice developed glomeruli with a disturbed morphology, an enlarged subpodocyte space, mild effacement, and significantly reduced expression of nephrin and vinculin. Furthermore, nephrotoxic serum injection led to significantly higher levels of proteinuria in PodoPalld-/- mice than in controls. Kidney biopsy specimens from patients with diabetic nephropathy and FSGS showed downregulation of palladin in podocytes as well.Conclusions Palladin has an important role in podocyte function in vitro and in vivo.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Podócitos/metabolismo , Animais , Citoesqueleto , Feminino , Adesões Focais , Expressão Gênica , Inativação Gênica , Humanos , Glomérulos Renais/patologia , Masculino , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Morfolinos/farmacologia , Podócitos/patologia , RNA Mensageiro/metabolismo , Vinculina/genética , Vinculina/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
15.
J Cell Mol Med ; 22(5): 2656-2669, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29498212

RESUMO

Dedifferentiation and loss of podocytes are the major cause of chronic kidney disease. Dach1, a transcription factor that is essential for cell fate, was found in genome-wide association studies to be associated with the glomerular filtration rate. We found that podocytes express high levels of Dach1 in vivo and to a much lower extent in vitro. Parietal epithelial cells (PECs) that are still under debate to be a type of progenitor cell for podocytes expressed Dach1 only at low levels. The transfection of PECs with a plasmid encoding for Dach1 induced the expression of synaptopodin, a podocyte-specific protein, demonstrated by immunocytochemistry and Western blot. Furthermore, synaptopodin was located along actin fibres in a punctate pattern in Dach1-expressing PECs comparable with differentiated podocytes. Moreover, dedifferentiating podocytes of isolated glomeruli showed a significant reduction in the expression of Dach1 together with synaptopodin after 9 days in cell culture. To study the role of Dach1 in vivo, we used the zebrafish larva as an animal model. Knockdown of the zebrafish ortholog Dachd by morpholino injection into fertilized eggs resulted in a severe renal phenotype. The glomeruli of the zebrafish larvae showed morphological changes of the glomerulus accompanied by down-regulation of nephrin and leakage of the filtration barrier. Interestingly, glomeruli of biopsies from patients suffering from diabetic nephropathy showed also a significant reduction of Dach1 and synaptopodin in contrast to control biopsies. Taken together, Dach1 is a transcription factor that is important for podocyte differentiation and proper kidney function.


Assuntos
Podócitos/metabolismo , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação para Baixo/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Humanos , Larva/ultraestrutura , Masculino , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Podócitos/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Regulação para Cima/genética , Peixe-Zebra , Proteínas de Peixe-Zebra
16.
J Biol Chem ; 292(11): 4411-4422, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28130450

RESUMO

LPS-mediated activation of Toll-like receptor 4 (TLR4) in macrophages results in the coordinated release of proinflammatory cytokines, followed by regulatory mediators, to ensure that this potentially destructive pathway is tightly regulated. We showed previously that Rab8a recruits PI3Kγ for Akt-dependent signaling during TLR4 activation to limit the production of the proinflammatory cytokines IL-6 and IL-12p40 while enhancing the release of the regulatory/anti-inflammatory cytokine IL-10. Here we broaden the array of immune receptors controlled by Rab8a-PI3Kγ and further define the Rab-mediated membrane domains required for signaling. With CRISPR/Cas9-mediated gene editing to stably knock out and recover Rab8a in macrophage cell lines, we match Akt signaling profiles with cytokine outputs, confirming that Rab8a is a novel regulator of the Akt/mammalian target of rapamycin (mTOR) pathway downstream of multiple TLRs. Upon developing a Rab8a activation assay, we show that TLR3 and 9 agonists also activate Rab8a. Live-cell imaging reveals that Rab8a is first recruited to the plasma membrane and dorsal ruffles, but it is retained during collapse of ruffles to form macropinosomes enriched for phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), suggesting that the macropinosome is the location where Rab8a is active. We pinpoint macropinosomes as the sites for Rab8-mediated biasing of inflammatory signaling responses via inducible production of anti-inflammatory cytokines. Thus, Rab8a and PI3Kγ are positioned in multiple TLR pathways, and this signaling axis may serve as a pharmacologically tractable target during infection and inflammation.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/imunologia , Citocinas/imunologia , Macrófagos/imunologia , Receptores Toll-Like/imunologia , Proteínas rab de Ligação ao GTP/imunologia , Animais , Células Cultivadas , Feminino , Humanos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos de Fosfatidilinositol/análise , Fosfatos de Fosfatidilinositol/imunologia , Células RAW 264.7 , Transdução de Sinais , Receptores Toll-Like/análise , Proteínas rab de Ligação ao GTP/análise
17.
Crit Rev Microbiol ; 44(4): 465-486, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29345518

RESUMO

Interleukin-17 (IL-17) is a pro-inflammatory cytokine involved in the control of many different disorders, including autoimmune, oncogenic, and diverse infectious diseases. In the context of infectious diseases, IL-17 protects the host against various classes of microorganisms but, intriguingly, can also exacerbate the severity of some infections. The regulation of IL-17 expression stems, in part, from the activity of Interleukin-23 (IL-23), which drives the maturation of different classes of IL-17-producing cells that can alter the course of infection. In this review, we analyze IL-17/IL-23 signalling in bacterial infection, and examine the interconnecting mechanisms that link immune regulation, host genetics, and microbial virulence in the context of bacterial pathogenesis. We consider the roles of IL-17 in both acute and chronic bacterial infections, with a focus on mouse models of human bacterial disease that involve infection of mucosal surfaces in the lungs, urogenital, and gastrointestinal tracts. Polymorphisms in IL-17-encoding genes in humans, which have been associated with heightened host susceptibility to some bacterial pathogens, are discussed. Finally, we examine the implications of IL-17 biology in infectious diseases for the development of novel therapeutic strategies targeted at preventing bacterial infection.


Assuntos
Bactérias/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Interleucina-17/genética , Animais , Bactérias/genética , Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Infecções Bacterianas/fisiopatologia , Interações Hospedeiro-Patógeno , Humanos , Interleucina-17/imunologia , Virulência
18.
Immunol Cell Biol ; 95(5): 491-495, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28220810

RESUMO

The secreted hexameric form of the dengue virus (DENV) non-structural protein 1 (NS1) has recently been shown to elicit inflammatory cytokine release and disrupt endothelial cell monolayer integrity. This suggests that circulating NS1 contributes to the vascular leak that plays a major role in the pathology of dengue haemorrhagic fever and shock. Pathways activated by NS1 are thus of great interest as potential therapeutic targets. Recent works have separately implicated both toll-like receptor 4 (TLR4) and the TLR2/6 heterodimer in immune cell activation by NS1. Here we have used mouse gene knockout macrophages and antibodies blocking TLR function in human peripheral blood mononuclear cells to show that recombinant NS1, expressed and purified from eukaryotic cells, induces cytokine production via TLR4 but not TLR2/6. Furthermore, the commercial Escherichia coli-derived recombinant NS1 preparation used in other work to implicate TLR2/6 in the response is not correctly folded and appears to be contaminated by several microbial TLR ligands. Thus TLR4 remains a therapeutic target for DENV infections, with TLR4 antagonists holding promise for the treatment of dengue disease.


Assuntos
Vírus da Dengue/imunologia , Leucócitos/virologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 6 Toll-Like/metabolismo , Proteínas não Estruturais Virais/imunologia , Animais , Vírus da Dengue/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/patologia , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Polimixina B/farmacologia , Multimerização Proteica/efeitos dos fármacos
20.
J Immunol ; 195(8): 3890-900, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371254

RESUMO

Cytokines are key regulators of adequate immune responses to infection with Mycobacterium tuberculosis. We demonstrate that the p110δ catalytic subunit of PI3K acts as a downstream effector of the TLR family member RP105 (CD180) in promoting mycobacteria-induced cytokine production by macrophages. Our data show that the significantly reduced release of TNF and IL-6 by RP105(-/-) macrophages during mycobacterial infection was not accompanied by diminished mRNA or protein expression. Mycobacteria induced comparable activation of NF-κB and p38 MAPK signaling in wild-type (WT) and RP105(-/-) macrophages. In contrast, mycobacteria-induced phosphorylation of Akt was abrogated in RP105(-/-) macrophages. The p110δ-specific inhibitor, Cal-101, and small interfering RNA-mediated knockdown of p110δ diminished mycobacteria-induced TNF secretion by WT but not RP105(-/-) macrophages. Such interference with p110δ activity led to reduced surface-expressed TNF in WT but not RP105(-/-) macrophages, while leaving TNF mRNA and protein expression unaffected. Activity of Bruton's tyrosine kinase was required for RP105-mediated activation of Akt phosphorylation and TNF release by mycobacteria-infected macrophages. These data unveil a novel innate immune signaling axis that orchestrates key cytokine responses of macrophages and provide molecular insight into the functions of RP105 as an innate immune receptor for mycobacteria.


Assuntos
Antígenos CD/imunologia , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Antígenos CD/genética , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Inibidores Enzimáticos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Transporte Proteico/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Purinas/farmacologia , Quinazolinonas/farmacologia , Tuberculose/genética , Tuberculose/patologia , Fator de Necrose Tumoral alfa/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA