Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochem J ; 457(1): 79-87, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24099577

RESUMO

We have shown previously that the pro-inflammatory cytokine TNF (tumour necrosis factor) could drive sLe(x) (sialyl-Lewis(x)) biosynthesis through the up-regulation of the BX transcript isoform of the ST3GAL4 (ST3 ß-galactoside α-2,3-sialyltransferase 4) sialyltransferase gene in lung epithelial cells and human bronchial mucosa. In the present study, we show that the TNF-induced up-regulation of the ST3GAL4 BX transcript is mediated by MSK1/2 (mitogen- and stress-activated kinase 1/2) through the ERK (extracellular-signal-regulated kinase) and p38 MAPK (mitogen-activated protein kinase) pathways, and increases sLe(x) expression on high-molecular-mass glycoproteins in inflamed airway epithelium. We also show that the TNF-induced sLe(x) expression increases the adhesion of the Pseudomonas aeruginosa PAO1 and PAK strains to lung epithelial cells in a FliD-dependent manner. These results suggest that ERK and p38 MAPK, and the downstream kinase MSK1/2, should be considered as potential targets to hamper inflammation, bronchial mucin glycosylation changes and P. aeruginosa binding in the lung of patients suffering from lung diseases such as chronic bronchitis or cystic fibrosis.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Sialiltransferases/genética , Fator de Necrose Tumoral alfa/farmacologia , Proteínas de Bactérias/fisiologia , Brônquios/efeitos dos fármacos , Brônquios/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Oligossacarídeos/fisiologia , Pseudomonas aeruginosa/fisiologia , Mucosa Respiratória/metabolismo , Antígeno Sialil Lewis X , Sialiltransferases/metabolismo , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos , beta-Galactosídeo alfa-2,3-Sialiltransferase
2.
Glycobiology ; 22(6): 806-16, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22301273

RESUMO

We have recently established and characterized cellular clones deriving from MDA-MB-231 breast cancer cells that express the human G(D3) synthase (GD3S), the enzyme that controls the biosynthesis of b- and c-series gangliosides. The GD3S positive clones show a proliferative phenotype in the absence of serum or growth factors and an increased tumor growth in severe immunodeficient mice. This phenotype results from the constitutive activation of the receptor tyrosine kinase c-Met in spite of the absence of ligand and subsequent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphoinositide 3-kinase/Akt pathways. Here, we show by mass spectrometry analysis of total glycosphingolipids that G(D3) and G(D2) are the main gangliosides expressed by the GD3S positive clones. Moreover, G(D2) colocalized with c-Met at the plasma membrane and small interfering RNA silencing of the G(M2)/G(D2) synthase efficiently reduced the expression of G(D2) as well as c-Met phosphorylation and reversed the proliferative phenotype. Competition assays using anti-G(D2) monoclonal antibodies also inhibit proliferation and c-Met phosphorylation of GD3S positive clones in serum-free conditions. Altogether, these results demonstrate the involvement of the disialoganglioside G(D2) in MDA-MB-231 cell proliferation via the constitutive activation of c-Met. The accumulation of G(D2) in c-Met expressing cells could therefore reinforce the tumorigenicity and aggressiveness of breast cancer tumors.


Assuntos
Neoplasias da Mama/metabolismo , Gangliosídeos/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Sialiltransferases/genética , Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Membrana Celular/química , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Gangliosídeos/análise , Humanos , Espectrometria de Massas , Fenótipo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Sialiltransferases/metabolismo , Células Tumorais Cultivadas
3.
Molecules ; 17(8): 9559-72, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22885356

RESUMO

Glycosphingolipids from the ganglio-series are usually classified in four series according to the presence of 0 to 3 sialic acid residues linked to lactosylceramide. The transfer of sialic acid is catalyzed in the Golgi apparatus by specific sialyltransferases that show high specificity toward glycolipid substrates. ST8Sia I (EC 2.4.99.8, SAT-II, SIAT 8a) is the key enzyme controlling the biosynthesis of b- and c-series gangliosides. ST8Sia I is expressed at early developmental stages whereas in adult human tissues, ST8Sia I transcripts are essentially detected in brain. ST8Sia I together with b- and c-series gangliosides are also over-expressed in neuroectoderm-derived malignant tumors such as melanoma, glioblastoma, neuroblastoma and in estrogen receptor (ER) negative breast cancer, where they play a role in cell proliferation, migration, adhesion and angiogenesis. We have stably expressed ST8Sia I in MCF-7 breast cancer cells and analyzed the glycosphingolipid composition of wild type (WT) and GD3S+ clones. As shown by mass spectrometry, MCF-7 expressed a complex pattern of neutral and sialylated glycosphingolipids from globo- and ganglio-series. WT MCF-7 cells exhibited classical monosialylated gangliosides including G(M3), G(M2), and G(M1a). In parallel, the expression of ST8Sia I in MCF-7 GD3S+ clones resulted in a dramatic change in ganglioside composition, with the expression of b- and c-series gangliosides as well as unusual tetra- and pentasialylated lactosylceramide derivatives G(Q3) (II(3)Neu5Ac(4)-Gg(2)Cer) and G(P3) (II(3)Neu5Ac(5)-Gg(2)Cer). This indicates that ST8Sia I is able to act as an oligosialyltransferase in a cellular context.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Gangliosídeos/metabolismo , Expressão Gênica , Sialiltransferases/genética , Sialiltransferases/metabolismo , Feminino , Gangliosídeos/biossíntese , Glicoesfingolipídeos/metabolismo , Humanos , Células MCF-7 , Metilação
4.
BMC Biotechnol ; 11: 1, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21208406

RESUMO

BACKGROUND: The rat hybridoma cell line YB2/0 appears a good candidate for the large-scale production of low fucose recombinant mAbs due to its lower expression of fut8 gene than other commonly used rodent cell lines. However, important variations of the fucose content of recombinant mAbs are observed in production culture conditions. To improve our knowledge on the YB2/0 fucosylation capacity, we have cloned and characterized the rat fut8 gene. RESULTS: The cDNAs encoding the rat α1,6-fucosyltransferase (FucT VIII) were cloned from YB2/0 cells by polymerase chain reaction-based and 5' RNA-Ligase-Mediated RACE methods. The cDNAs contain an open reading frame of 1728 bp encoding a 575 amino acid sequence showing 94% and 88% identity to human and pig orthologs, respectively. The recombinant protein expressed in COS-7 cells exhibits a α1,6-fucosyltransferase activity toward human asialo-agalacto-apotransferrin. The rat fut8 gene is located on chromosome 6 q and spans over 140 kbp. It contains 9 coding exons and four 5'-untranslated exons. FISH analysis shows a heterogeneous copy number of fut8 in YB2/0 nuclei with 2.8 ± 1.4 mean copy number. The YB2/0 fut8 gene is expressed as two main transcripts that differ in the first untranslated exon by the usage of distinct promoters and alternative splicing. Luciferase assays allow defining the minimal promoting regions governing the initiation of the two transcripts, which are differentially expressed in YB2/0 as shown by duplex Taqman QPCR analysis. Bioinformatics analysis of the minimal promoter regions upstream exons E-2 and E-3, governing the transcription of T1 and T2 transcripts, respectively, evidenced several consensus sequences for potential transcriptional repressors. Transient transfections of Rat2 cells with transcription factor expression vectors allowed identifying KLF15 as a putative repressor of T1 transcript in Rat2 cells. CONCLUSION: Altogether, these data contribute to a better knowledge of fut8 expression in YB2/0 that will be useful to better control the fucosylation of recombinant mAbs produced in these cells.


Assuntos
Fucosiltransferases/genética , Animais , Sequência de Bases , Células COS , Linhagem Celular , Núcleo Celular , Chlorocebus aethiops , Mapeamento Cromossômico , Clonagem Molecular , Biologia Computacional , DNA Complementar/química , DNA Complementar/genética , DNA Complementar/metabolismo , Fucosiltransferases/biossíntese , Fucosiltransferases/química , Dosagem de Genes , Hibridomas , Hibridização in Situ Fluorescente , Interfase , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Ratos , Estatísticas não Paramétricas
5.
Breast Cancer Res ; 12(3): 204, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20550729

RESUMO

Glycosylation changes that occur in cancer often lead to the expression of tumour-associated carbohydrate antigens. In breast cancer, these antigens are usually associated with a poor prognosis and a reduced overall survival. Cellular models have shown the implication of these antigens in cell adhesion, migration, proliferation and tumour growth. The present review summarizes our current knowledge of glycosylation changes (structures, biosynthesis and occurrence) in breast cancer cell lines and primary tumours, and the consequences on disease progression and aggressiveness. The therapeutic strategies attempted to target tumour-associated carbohydrate antigens in breast cancer are also discussed.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Humanos , Prognóstico
6.
PLoS One ; 8(4): e62559, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626833

RESUMO

Recent data have underlined a possible role of G(D3) synthase (GD3S) and complex gangliosides in Estrogen Receptor (ER) negative breast cancer progression. Here, we describe the main transcript of the GD3S coding gene ST8SIA1 expressed in breast tumors. We characterized the corresponding core promoter in Hs578T breast cancer cells and showed that estradiol decreases ST8SIA1 mRNA expression in ER-positive MCF-7 cells and ERα-transfected ER-negative Hs578T cells. The activity of the core promoter sequence of ST8SIA1 is also repressed by estradiol. The core promoter of ST8SIA1 contains two putative Estrogen Response Elements (ERE) that were not found to be involved in the promoter activity pathway. However, NFκB was shown to be involved in ST8SIA1 transcriptional activation and we demonstrated that estradiol prevents NFκB to bind to ST8SIA1 core promoter in ERα expressing breast cancer cells by inhibiting p65 and p50 nucleus localization. The activation of NFκB pathway in ER-negative tumors, due to the absence of estradiol signaling, might explain the overexpression of G(D3) synthase in this tumor subtype.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estradiol/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Sialiltransferases/genética , Região 5'-Flanqueadora , Linhagem Celular Tumoral , Biologia Computacional/métodos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , Elementos de Resposta
7.
Cells ; 2(4): 751-67, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24709879

RESUMO

Gangliosides, the glycosphingolipids carrying one or several sialic acid residues, are located on the outer leaflet of the plasma membrane in glycolipid-enriched microdomains, where they interact with molecules of signal transduction pathways including receptors tyrosine kinases (RTKs). The role of gangliosides in the regulation of signal transduction has been reported in many cases and in a large number of cell types. In this review, we summarize the current knowledge on the biosynthesis of gangliosides and the mechanism by which they regulate RTKs signaling.

8.
Clin Exp Metastasis ; 30(7): 919-31, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23739843

RESUMO

Distant metastasis account for about 90 % of cancer associated deaths, and yet the oncology field is cruelly lacking tools to accurately predict and/or prevent metastasis. Distant metastasis occurs when circulating tumor cells interact with the endothelium of distant organs and extravasate from the blood vessel into the surrounding tissue. Selectins are a family of carbohydrate receptors well depicted for their role in tumor cells extravasation. They mediate primary interactions of cancer cells with endothelial cells, as well as secondary interactions with leucocytes and platelets, which are also promoting metastasis. The cancer associated carbohydrate antigen sialyl-Lewis x (sLe(x)) has been repeatedly shown to be involved, as selectin ligand, in these interactions. However, recent studies have highlighted that glycosaminoglycans (GAGs), another class of glycans, may also serve as ligands for selectins. We report herein that cancer-associated GAGs are differentially recognized by selectins according to their density of sulfation and the pH conditions of the binding. We also show that these parameters regulate platelets-cancer cells heterotypic aggregation, supporting the idea that GAGs may have pro-metastatic function. Combining our experimental results with in depth analyses of molecular dockings, we propose a model of GAG/selectin interactions robust enough to recapitulate the differential binding of selectins to GAGs, the competition between GAGs and sLe(x) for selectin binding and the effect of sub-physiological pH on GAGs affinities towards selectins. Altogether, our data suggest GAGs to be good ligands for selectins, potentially promoting distant metastasis in a complementary way to sLe(x).


Assuntos
Neoplasias da Mama/metabolismo , Glicosaminoglicanos/metabolismo , Metástase Neoplásica , Selectinas/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Ligantes
9.
Carbohydr Res ; 345(10): 1377-83, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20231016

RESUMO

Changes in cell surface glycosylation are common modifications that occur during oncogenesis, leading to the over-expression of tumour-associated carbohydrate antigens (TACA). Most of these antigens are sialylated and the increase of sialylation is a well-known feature of transformed cells. In breast cancer, expression of TACA such as sialyl-Lewis(x) or sialyl-Tn is usually associated with a poor prognosis and a decreased overall survival of patients. However, the specific role of these sialylated antigens in breast tumour development and aggressiveness is not clearly understood. These glycosylation changes result from the modification of the expression of genes encoding specific glycosyltransferases involved in glycan biosynthesis and the level of expression of sialyltransferase genes has been proposed to be a prognostic marker for the follow-up of breast cancer patients. Several human cellular models have been developed in order to explain the mechanisms by which carbohydrate antigens can reinforce breast cancer progression and aggressiveness. TACA expression is associated with changes in cell adhesion, migration, proliferation and tumour growth. In addition, recent data on glycolipid biosynthesis indicate an important role of G(D3) synthase expression in breast cancer progression. The aim of this review is to summarize our current knowledge of sialylation changes that occur in breast cancer and to describe the cellular models developed to analyze the consequences of these changes on disease progression and aggressiveness.


Assuntos
Antígenos/química , Antígenos/metabolismo , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Animais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Sequência de Carboidratos , Humanos , Dados de Sequência Molecular , Prognóstico , Sialiltransferases/genética
10.
Mol Cancer Res ; 8(11): 1526-35, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20889649

RESUMO

The disialoganglioside G(D3) is overexpressed in ∼50% of invasive ductal breast carcinoma, and the G(D3) synthase gene (ST8SIA1) displays higher expression among estrogen receptor-negative breast cancer tumors, associated with a decreased overall survival of breast cancer patients. However, no relationship between ganglioside expression and breast cancer development and aggressiveness has been reported. We have previously shown that overexpression of G(D3) synthase induces the accumulation of b- and c-series gangliosides (G(D3), G(D2), and G(T3)) at the cell surface of MDA-MB-231 breast cancer cells together with the acquisition of a proliferative phenotype in the absence of serum. Here, we show that phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways are constitutively activated in G(D3) synthase-expressing cells. Analysis of phosphorylation of tyrosine kinase receptors shows a specific c-Met constitutive activation in G(D3) synthase-expressing cells, in the absence of its ligand, hepatocyte growth factor/scatter factor. In addition, inhibition of c-Met or downstream signaling pathways reverses the proliferative phenotype. We also show that G(D3) synthase expression enhances tumor growth in severe combined immunodeficient mice. Finally, a higher expression of ST8SIA1 and MET in the basal subtype of human breast tumors are observed. Altogether, our results show that G(D3) synthase expression is sufficient to enhance the tumorigenicity of MDA-MB-231 breast cancer cells through a ganglioside-dependent activation of the c-Met receptor.


Assuntos
Neoplasias da Mama/enzimologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Sialiltransferases/biossíntese , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Gangliosídeos/metabolismo , Humanos , Camundongos , Camundongos SCID , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA