RESUMO
Plasmodium falciparum causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during P. falciparum liver infection remains unexplored. Here, we use the FlpL/FRT system to conditionally excise genes in P. falciparum sporozoites for functional liver-stage studies. Disruption of PTEX members ptex150 and exp2 did not affect sporozoite development in mosquitoes or infectivity for hepatocytes but attenuated liver-stage growth in humanized mice. While PTEX150 deficiency reduced fitness on day 6 postinfection by 40%, EXP2 deficiency caused 100% loss of liver parasites, demonstrating that PTEX components are required for growth in hepatocytes to differing degrees. To characterize PTEX loss-of-function mutations, we localized four liver-stage Plasmodium export element (PEXEL) proteins. P. falciparum liver specific protein 2 (LISP2), liver-stage antigen 3 (LSA3), circumsporozoite protein (CSP), and a Plasmodium berghei LISP2 reporter all localized to the periphery of P. falciparum liver stages but were not exported beyond the PVM. Expression of LISP2 and CSP but not LSA3 was reduced in ptex150-FRT and exp2-FRT liver stages, suggesting that expression of some PEXEL proteins is affected directly or indirectly by PTEX disruption. These results show that PTEX150 and EXP2 are important for P. falciparum development in hepatocytes and emphasize the emerging complexity of PEXEL protein trafficking.
Assuntos
Hepatócitos , Fígado , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Esporozoítos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Animais , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Esporozoítos/metabolismo , Esporozoítos/crescimento & desenvolvimento , Camundongos , Fígado/parasitologia , Fígado/metabolismo , Humanos , Hepatócitos/parasitologia , Hepatócitos/metabolismo , Malária Falciparum/parasitologiaRESUMO
Apicomplexan parasites are aetiological agents of numerous diseases in humans and livestock. Functional genomics studies in these parasites enable the identification of biological mechanisms and protein functions that can be targeted for therapeutic intervention. Recent improvements in forward genetics and whole-genome screens utilising CRISPR/Cas technology have revolutionised the functional analysis of genes during Apicomplexan infection of host cells. Here, we highlight key discoveries from CRISPR/Cas9 screens in Apicomplexa or their infected host cells and discuss remaining challenges to maximise this technology that may help answer fundamental questions about parasite-host interactions.
Assuntos
Apicomplexa , Parasitos , Humanos , Animais , Sistemas CRISPR-Cas , Genoma , Apicomplexa/genética , Parasitos/genética , Interações Hospedeiro-ParasitaRESUMO
BACKGROUND & AIMS: Necroptosis is a highly inflammatory mode of cell death that has been implicated in causing hepatic injury including steatohepatitis/ nonalcoholic steatohepatitis (NASH); however, the evidence supporting these claims has been controversial. A comprehensive, fundamental understanding of cell death pathways involved in liver disease critically underpins rational strategies for therapeutic intervention. We sought to define the role and relevance of necroptosis in liver pathology. METHODS: Several animal models of human liver pathology, including diet-induced steatohepatitis in male mice and diverse infections in both male and female mice, were used to dissect the relevance of necroptosis in liver pathobiology. We applied necroptotic stimuli to primary mouse and human hepatocytes to measure their susceptibility to necroptosis. Paired liver biospecimens from patients with NASH, before and after intervention, were analyzed. DNA methylation sequencing was also performed to investigate the epigenetic regulation of RIPK3 expression in primary human and mouse hepatocytes. RESULTS: Identical infection kinetics and pathologic outcomes were observed in mice deficient in an essential necroptotic effector protein, MLKL, compared with control animals. Mice lacking MLKL were indistinguishable from wild-type mice when fed a high-fat diet to induce NASH. Under all conditions tested, we were unable to induce necroptosis in hepatocytes. We confirmed that a critical activator of necroptosis, RIPK3, was epigenetically silenced in mouse and human primary hepatocytes and rendered them unable to undergo necroptosis. CONCLUSIONS: We have provided compelling evidence that necroptosis is disabled in hepatocytes during homeostasis and in the pathologic conditions tested in this study.
Assuntos
Necroptose , Hepatopatia Gordurosa não Alcoólica , Humanos , Feminino , Masculino , Camundongos , Animais , Epigênese Genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatócitos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Quinases/genéticaRESUMO
Twenty years ago the Molecular Approaches to Malaria conference was conceived as a forum to present the very latest advances in malaria research and to consolidate and forge new collaborative links between international researchers. The 6th MAM conference, held in February 2020 in Australia, provided 5 days of stimulating scientific exchange and highlighted the incredible malaria research conducted globally that is providing the critical knowledge and cutting-edge technological tools needed to control and ultimately eliminate malaria.
Assuntos
Malária , Plasmodium , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Desenvolvimento de Medicamentos , Resistência a Medicamentos , Humanos , Imunogenicidade da Vacina , Malária/tratamento farmacológico , Malária/imunologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/imunologia , Plasmodium/efeitos dos fármacos , Plasmodium/genética , Plasmodium/patogenicidade , Plasmodium/fisiologiaRESUMO
Malaria is a devastating disease caused by Plasmodium parasites. Emerging resistance against current antimalarial therapeutics has engendered the need to develop antimalarials with novel structural classes. We recently described the identification and initial optimization of the 2-anilino quinazoline antimalarial class. Here, we refine the physicochemical properties of this antimalarial class with the aim to improve aqueous solubility and metabolism and to reduce adverse promiscuity. We show the physicochemical properties of this class are intricately balanced with asexual parasite activity and human cell cytotoxicity. Structural modifications we have implemented improved LipE, aqueous solubility and in vitro metabolism while preserving fast acting P. falciparum asexual stage activity. The lead compounds demonstrated equipotent activity against P. knowlesi parasites and were not predisposed to resistance mechanisms of clinically used antimalarials. The optimized compounds exhibited modest activity against early-stage gametocytes, but no activity against pre-erythrocytic liver parasites. Confoundingly, the refined physicochemical properties installed in the compounds did not engender improved oral efficacy in a P. berghei mouse model of malaria compared to earlier studies on the 2-anilino quinazoline class. This study provides the framework for further development of this antimalarial class.
Assuntos
Compostos de Anilina/química , Compostos de Anilina/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Quinazolinas/química , Quinazolinas/farmacologia , Aminação , Compostos de Anilina/uso terapêutico , Animais , Antimaláricos/uso terapêutico , Feminino , Humanos , Malária/parasitologia , Camundongos , Plasmodium/fisiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Quinazolinas/uso terapêuticoRESUMO
Transmission of the malaria parasite Plasmodium falciparum involves infection of Anopheles mosquitoes. Here we characterize SOPT, a protein expressed in P. falciparum ookinetes that facilitates infection of the mosquito midgut. SOPT was identified on the basis that it contains a signal peptide, a PEXEL-like sequence and is expressed in asexual, ookinete and sporozoite stages, suggesting it is involved in infecting the human or mosquito host. SOPT is predicted to contain a subtilisin-like fold with a non-canonical catalytic triad and is orthologous to P. berghei PIMMS2. Localization studies reveal that SOPT is not exported to the erythrocyte but is expressed in ookinetes at the parasite periphery. SOPT-deficient parasites develop normally through the asexual and sexual stages and produce equivalent numbers of ookinetes to NF54 controls, however, they form fewer oocysts and sporozoites in mosquitoes. SOPT-deficient parasites were also unable to activate the immune-responsive midgut invasion marker SRPN6 after mosquito ingestion, suggesting they are defective for entry into the midgut. Disruption of SOPT in P. berghei (PIMMS2) did not affect other lifecycle stages or ookinete development but again resulted in fewer oocysts and sporozoites in mosquitoes. Collectively, this study shows that SOPT/PIMMS2 plays a conserved role in ookinetes of different Plasmodium species.
Assuntos
Anopheles/parasitologia , Sistema Digestório/parasitologia , Oocistos/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Esporozoítos/crescimento & desenvolvimento , Animais , Malária Falciparum/transmissão , Mosquitos Vetores/parasitologia , Subtilisina/metabolismoRESUMO
Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity.
Assuntos
Burkholderia pseudomallei/genética , Epigênese Genética , Genoma Bacteriano , Recombinação Genética , Transcriptoma , Animais , Primers do DNA , DNA Bacteriano/genética , Escherichia coli/genética , Feminino , Deleção de Genes , Estudos de Associação Genética , Genômica , Haplótipos , Humanos , Melioidose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNARESUMO
One of the most fascinating and remarkable features of Plasmodium parasites, which cause malaria, is their choice of erythrocytes as the principal host cells in which to reside during infection of a vertebrate host. Parasites completely renovate the terminally differentiated cells, which lack most of the normal organelles and functions of other cells, such as a nucleus and the machinery to express and transport proteins to subcellular locations. Erythrocyte remodeling begins immediately after invasion by the Plasmodium parasite, by expression and export of many hundreds of proteins that assemble into molecular machinery in the host cell that permit protein trafficking, harvesting of nutrients, and mechanisms to evade host immune responses. In this review, we discuss recent studies on erythrocyte remodeling, including mechanisms of protein export as well as the identity, functions, and subcellular locations of key exported proteins.
Assuntos
Eritrócitos/parasitologia , Malária/parasitologia , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Humanos , Plasmodium/genética , Transporte Proteico , Proteínas de Protozoários/genéticaRESUMO
The malaria sporozoite injected by a mosquito migrates to the liver by traversing host cells. The sporozoite also traverses hepatocytes before invading a terminal hepatocyte and developing into exoerythrocytic forms. Hepatocyte infection is critical for parasite development into merozoites that infect erythrocytes, and the sporozoite is thus an important target for antimalarial intervention. Here, we investigated two abundant sporozoite proteins of the most virulent malaria parasite Plasmodium falciparum and show that they play important roles during cell traversal and invasion of human hepatocytes. Incubation of P. falciparum sporozoites with R1 peptide, an inhibitor of apical merozoite antigen 1 (AMA1) that blocks merozoite invasion of erythrocytes, strongly reduced cell traversal activity. Consistent with its inhibitory effect on merozoites, R1 peptide also reduced sporozoite entry into human hepatocytes. The strong but incomplete inhibition prompted us to study the AMA-like protein, merozoite apical erythrocyte-binding ligand (MAEBL). MAEBL-deficient P. falciparum sporozoites were severely attenuated for cell traversal activity and hepatocyte entry in vitro and for liver infection in humanized chimeric liver mice. This study shows that AMA1 and MAEBL are important for P. falciparum sporozoites to perform typical functions necessary for infection of human hepatocytes. These two proteins therefore have important roles during infection at distinct points in the life cycle, including the blood, mosquito, and liver stages.
Assuntos
Hepatócitos/parasitologia , Malária Falciparum/parasitologia , Proteínas de Membrana/antagonistas & inibidores , Merozoítos/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/antagonistas & inibidores , Receptores de Superfície Celular/antagonistas & inibidores , Esporozoítos/crescimento & desenvolvimento , Animais , Anopheles/parasitologia , Antígenos de Protozoários/genética , Linhagem Celular , Modelos Animais de Doenças , Eritrócitos/parasitologia , Humanos , Fígado/parasitologia , Proteínas de Membrana/genética , Camundongos , Camundongos SCID , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genéticaRESUMO
The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum-infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target.
Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Proteases/antagonistas & inibidores , Oligopeptídeos/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Sulfonamidas/farmacologia , Retículo Endoplasmático/metabolismo , Eritrócitos/parasitologia , Humanos , Transporte Proteico/efeitos dos fármacos , Proteínas de Protozoários/metabolismoRESUMO
The use of arginine isosteres is a known strategy to overcome poor membrane permeability commonly associated with peptides or peptidomimetics that possess this highly polar amino acid. Here, we apply this strategy to peptidomimetics that are potent inhibitors of the malarial protease, plasmepsin V, with the aim of enhancing their activity against Plasmodium parasites, and exploring the structure-activity relationship of the P3 arginine within the S3 pocket of plasmepsin V. Of the arginine isosteres trialled in the P3 position, we discovered that canavanine was the ideal and that this peptidomimetic potently inhibits plasmepsin V, efficiently blocks protein export and inhibits parasite growth. Structure studies of the peptidomimetics bound to plasmepsin V provided insight into the structural basis for the enzyme activity observed in vitro and provides further evidence why plasmepsin V is highly sensitive to substrate modification.
Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Peptidomiméticos/química , Plasmodium vivax/enzimologia , Animais , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Plasmodium falciparum causes the virulent form of malaria and disease manifestations are linked to growth inside infected erythrocytes. To survive and evade host responses the parasite remodels the erythrocyte by exporting several hundred effector proteins beyond the surrounding parasitophorous vacuole membrane. A feature of exported proteins is a pentameric motif (RxLxE/Q/D) that is a substrate for an unknown protease. Here we show that the protein responsible for cleavage of this motif is plasmepsin V (PMV), an aspartic acid protease located in the endoplasmic reticulum. PMV cleavage reveals the export signal (xE/Q/D) at the amino terminus of cargo proteins. Expression of an identical mature protein with xQ at the N terminus generated by signal peptidase was not exported, demonstrating that PMV activity is essential and linked with other key export events. Identification of the protease responsible for export into erythrocytes provides a novel target for therapeutic intervention against this devastating disease.
Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Eritrócitos/metabolismo , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Animais , Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/isolamento & purificação , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Eritrócitos/citologia , Eritrócitos/parasitologia , Inibidores da Protease de HIV/farmacologia , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico , Proteínas de Protozoários/químicaRESUMO
The routine study of human malaria liver-stage biology in vitro is hampered by low infection efficiency of human hepatocellular carcinoma (HCC) lines (<0.1%), poor understanding of steady-state HCC biology, and lack of appropriate tools for trace sample analysis. HC-04 is the only HCC that supports complete development of human malaria parasites. We hypothesized that HCCs are in various intermediate stages of the epithelial-mesenchymal transition (EMT) and HC-04s retain epithelial characteristics that permit infection. We developed a facile analytical approach to test this hypothesis viz. the HC-04 response to hepatocyte growth factor (HGF). We used online two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS) to quantify protein expression profiles in HC-04 pre-/post-HGF treatment and validated these results by RT-qPCR and microscopy. We successfully increased protein identification efficiency over offline-2D methods by 12-fold, using less sample material, allowing robust protein quantification. We observed expected up-regulation and down-regulation of EMT protein markers in response to HGF, but also unexpected cellular responses. We also observed that HC-04 is generally more susceptible to HGF-mediated signaling than what was observed for HepG2, a widely used, but poor malaria liver stage-HCC model. Our analytical approach to understanding the basic biology of HC-04 helps us understand the factors that may influence its utility as a model for malaria liver-stage development. We observed that HC-04 treatment with HGF prior to the addition of Plasmodium falciparum sporozoites did not facilitate cell invasion, which suggests unlinking the effect of HGF on malaria liver stage development from hepatocyte invasion. Finally, our 2D-LC-MS/MS approach and broadly applicable experimental strategy should prove useful in the analysis of various hepatocyte-pathogen interactions, tumor progression, and early disease events.
Assuntos
Linhagem Celular Tumoral/parasitologia , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/parasitologia , Malária Falciparum/parasitologia , Modelos Biológicos , Plasmodium falciparum/fisiologia , Linhagem Celular Tumoral/citologia , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Malária Falciparum/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Transporte Proteico , Proteômica , Proteínas de Protozoários/metabolismoRESUMO
Plasmodium falciparum exports several hundred effector proteins that remodel the host erythrocyte and enable parasites to acquire nutrients, sequester in the circulation and evade immune responses. The majority of exported proteins contain the Plasmodium export element (PEXEL; RxLxE/Q/D) in their N-terminus, which is proteolytically cleaved in the parasite endoplasmic reticulum by Plasmepsin V, and is necessary for export. Several exported proteins lack a PEXEL or contain noncanonical motifs. Here, we assessed whether Plasmepsin V could process the N-termini of diverse protein families in P. falciparum. We show that Plasmepsin V cleaves N-terminal sequences from RIFIN, STEVOR and RESA multigene families, the latter of which contain a relaxed PEXEL (RxLxxE). However, Plasmepsin V does not cleave the N-terminal sequence of the major exported virulence factor erythrocyte membrane protein 1 (PfEMP1) or the PEXEL-negative exported proteins SBP-1 or REX-2. We probed the substrate specificity of Plasmepsin V and determined that lysine at the PEXEL P3 position, which is present in PfEMP1 and other putatively exported proteins, blocks Plasmepsin V activity. Furthermore, isoleucine at position P1 also blocked Plasmepsin V activity. The specificity of Plasmepsin V is therefore exquisitely confined and we have used this novel information to redefine the predicted P. falciparum PEXEL exportome.
Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Eritrócitos/parasitologia , Proteínas de Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Antígenos de Protozoários/metabolismo , Proteínas de Transporte/metabolismo , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Retículo Endoplasmático/metabolismo , Eritrócitos/citologia , Humanos , Estrutura Terciária de Proteína , Software , Frações Subcelulares , Fatores de Virulência/metabolismoRESUMO
Several hundred malaria parasite proteins are exported beyond an encasing vacuole and into the cytosol of the host erythrocyte, a process that is central to the virulence and viability of the causative Plasmodium species. The trafficking machinery responsible for this export is unknown. Here we identify in Plasmodium falciparum a translocon of exported proteins (PTEX), which is located in the vacuole membrane. The PTEX complex is ATP-powered, and comprises heat shock protein 101 (HSP101; a ClpA/B-like ATPase from the AAA+ superfamily, of a type commonly associated with protein translocons), a novel protein termed PTEX150 and a known parasite protein, exported protein 2 (EXP2). EXP2 is the potential channel, as it is the membrane-associated component of the core PTEX complex. Two other proteins, a new protein PTEX88 and thioredoxin 2 (TRX2), were also identified as PTEX components. As a common portal for numerous crucial processes, this translocon offers a new avenue for therapeutic intervention.
Assuntos
Malária Falciparum/parasitologia , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Biológicos , Ligação Proteica , Transporte ProteicoRESUMO
Apical membrane antigen-1 (AMA1) is a conserved malarial vaccine candidate essential for the formation of tight junctions with the rhoptry neck protein (RON) complex, enabling Plasmodium parasites to invade human erythrocytes, hepatocytes, and mosquito salivary glands. Despite its critical role, extensive surface polymorphisms in AMA1 have led to strain-specific protection, limiting the success of AMA1-based interventions beyond initial clinical trials. Here, we identify an i-body, a humanised single-domain antibody-like molecule that recognises a conserved pan-species conformational epitope in AMA1 with low nanomolar affinity and inhibits the binding of the RON2 ligand to AMA1. Structural characterisation indicates that the WD34 i-body epitope spans the centre of the conserved hydrophobic cleft in AMA1, where interacting residues are highly conserved among all Plasmodium species. Furthermore, we show that WD34 inhibits merozoite invasion of erythrocytes by multiple Plasmodium species and hepatocyte invasion by P. falciparum sporozoites. Despite a short half-life in mouse serum, we demonstrate that WD34 transiently suppressed P. berghei infections in female BALB/c mice. Our work describes the first pan-species AMA1 biologic with inhibitory activity against multiple life-cycle stages of Plasmodium. With improved pharmacokinetic characteristics, WD34 could be a potential immunotherapy against multiple species of Plasmodium.
Assuntos
Antígenos de Protozoários , Eritrócitos , Fígado , Proteínas de Membrana , Camundongos Endogâmicos BALB C , Proteínas de Protozoários , Animais , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Feminino , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Humanos , Eritrócitos/parasitologia , Eritrócitos/imunologia , Fígado/parasitologia , Fígado/imunologia , Fígado/metabolismo , Vacinas Antimaláricas/imunologia , Malária/imunologia , Malária/parasitologia , Malária/prevenção & controle , Reações Cruzadas/imunologia , Plasmodium falciparum/imunologia , Plasmodium berghei/imunologia , Epitopos/imunologia , Hepatócitos/parasitologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Plasmodium/imunologia , Merozoítos/imunologia , Merozoítos/metabolismoRESUMO
The mechanism of translocation of RxLR effectors from plant pathogenic oomycetes into the cytoplasm of their host is currently the object of intense research activity and debate. Here, we report the biochemical and thermodynamic characterization of the Phytophthora infestans effector AVR3a in vitro. We show that the amino acids surrounding the RxLR leader mediate homodimerization of the protein. Dimerization was considerably attenuated by a localized mutation within the RxLR motif that was previously described to prevent translocation of the protein into host. Importantly, we confirm that the reported phospholipid-binding properties of AVR3a are mediated by its C-terminal effector domain, not its RxLR leader. However, we show that the observed phospholipid interaction is attributable to a weak association with denatured protein molecules and is therefore most likely physiologically irrelevant.
Assuntos
Fosfolipídeos/metabolismo , Phytophthora infestans/metabolismo , Multimerização Proteica , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Mutação , Fosfolipídeos/química , Phytophthora infestans/genética , Doenças das Plantas/microbiologia , Ligação Proteica , Sinais Direcionadores de Proteínas/genética , Solanum tuberosum/microbiologia , Fatores de Virulência/genéticaRESUMO
Tryptophan C-mannosylation stabilizes proteins bearing a thrombospondin repeat (TSR) domain in metazoans. Here we show that Plasmodium falciparum expresses a DPY19 tryptophan C-mannosyltransferase in the endoplasmic reticulum and that DPY19-deficiency abolishes C-glycosylation, destabilizes members of the TRAP adhesin family and inhibits transmission to mosquitoes. Imaging P. falciparum gametogenesis in its entirety in four dimensions using lattice light-sheet microscopy reveals defects in ΔDPY19 gametocyte egress and exflagellation. While egress is diminished, ΔDPY19 microgametes still fertilize macrogametes, forming ookinetes, but these are abrogated for mosquito infection. The gametogenesis defects correspond with destabilization of MTRAP, which we show is C-mannosylated in P. falciparum, and the ookinete defect is concordant with defective CTRP secretion on the ΔDPY19 background. Genetic complementation of DPY19 restores ookinete infectivity, sporozoite production and C-mannosylation activity. Therefore, tryptophan C-mannosylation by DPY19 ensures TSR protein quality control at two lifecycle stages for successful transmission of the human malaria parasite.
Assuntos
Culicidae , Malária Falciparum , Animais , Culicidae/metabolismo , Glicosilação , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trombospondinas/metabolismo , Triptofano/metabolismoRESUMO
The intracellular survival of Plasmodium falciparum within human erythrocytes is dependent on export of parasite proteins that remodel the host cell. Most exported proteins require a conserved motif (RxLxE/Q/D), termed the Plasmodium export element (PEXEL) or vacuolar targeting sequence (VTS), for targeting beyond the parasitophorous vacuole membrane and into the host cell; however, the precise role of this motif in export is poorly defined. We used transgenic P. falciparum expressing chimeric proteins to investigate the function of the PEXEL motif for export. The PEXEL constitutes a bifunctional export motif comprising a protease recognition sequence that is cleaved, in the endoplasmic reticulum, from proteins destined for export, in a PEXEL arginine- and leucine-dependent manner. Following processing, the remaining conserved PEXEL residue is required to direct the mature protein to the host cell. Furthermore, we demonstrate that N acetylation of proteins following N-terminal processing is a PEXEL-independent process that is insufficient for correct export to the host cell. This work defines the role of each residue in the PEXEL for export into the P. falciparum-infected erythrocyte.