Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
PLoS One ; 12(7): e0180800, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700629

RESUMO

Escherichia coli encodes two DNA ligases, ligase A, which is essential under normal laboratory growth conditions, and ligase B, which is not. Here we report potential functions of ligase B. We found that across the entire Enterobacteriaceae family, ligase B is highly conserved in both amino acid identity and synteny with genes associated with oxidative stress. Deletion of ligB sensitized E. coli to specific DNA damaging agents and antibiotics resulted in a weak mutator phenotype, and decreased biofilm formation. Overexpression of ligB caused a dramatic extension of lag phase that eventually resumed normal growth. The ligase function of ligase B was not required to mediate the extended lag phase, as overexpression of a ligase-deficient ligB mutant also blocked growth. Overexpression of ligB during logarithmic growth caused an immediate block of cell growth and DNA replication, and death of about half of cells. These data support a potential role for ligase B in the base excision repair pathway or the mismatch repair pathway.


Assuntos
DNA Ligases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Dano ao DNA/genética , DNA Ligases/genética , Replicação do DNA/genética , Replicação do DNA/fisiologia , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia
3.
PLoS One ; 8(6): e65961, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23824211

RESUMO

Current efforts to understand antibiotic resistance on the whole genome scale tend to focus on known genes even as high throughput sequencing strategies uncover novel mechanisms. To identify genomic variations associated with antibiotic resistance, we employed a modified genome-wide association study; we sequenced genomic DNA from pools of E. coli clinical isolates with similar antibiotic resistance phenotypes using SOLiD technology to uncover single nucleotide polymorphisms (SNPs) unanimously conserved in each pool. The multidrug-resistant pools were genotypically similar to SMS-3-5, a previously sequenced multidrug-resistant isolate from a polluted environment. The similarity was evenly spread across the entire genome and not limited to plasmid or pathogenicity island loci. Among the pools of clinical isolates, genomic variation was concentrated adjacent to previously reported inversion and duplication differences between the SMS-3-5 isolate and the drug-susceptible laboratory strain, DH10B. SNPs that result in non-synonymous changes in gyrA (encoding the well-known S83L allele associated with fluoroquinolone resistance), mutM, ligB, and recG were unanimously conserved in every fluoroquinolone-resistant pool. Alleles of the latter three genes are tightly linked among most sequenced E. coli genomes, and had not been implicated in antibiotic resistance previously. The changes in these genes map to amino acid positions in alpha helices that are involved in DNA binding. Plasmid-encoded complementation of null strains with either allelic variant of mutM or ligB resulted in variable responses to ultraviolet light or hydrogen peroxide treatment as markers of induced DNA damage, indicating their importance in DNA metabolism and revealing a potential mechanism for fluoroquinolone resistance. Our approach uncovered evidence that additional DNA binding enzymes may contribute to fluoroquinolone resistance and further implicate environmental bacteria as a reservoir for antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Genótipo , DNA Bacteriano/genética , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA