Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407424, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073290

RESUMO

Dynamic combinatorial chemistry (DCC) creates libraries of molecules that are constantly interchanging in a dynamic combinatorial library. When a library member self-assembles, it can displace the equilibria, leading to emergent phenomena like its selection or even its replication. However, such dynamic combinatorial libraries typically operate in or close to equilibrium. This work introduces a new dynamic combinatorial chemistry fueled by a catalytic reaction cycle that forms transient, out-of-equilibrium peptide-based macrocycles. The products in this library exist out of equilibrium at the expense of fuel and are thus regulated by kinetics and thermodynamics. By creating a chemically fueled dynamic combinatorial library with the vast structural space of amino acids, we explored the liquid-liquid phase separation behavior of the library members. The study advances DCCs by showing that peptide structures can be engineered to control the dynamic library's behavior. The work paves the way for creating novel, tunable material systems that exhibit emergent behavior reminiscent of biological systems. These findings have implications for the development of new materials and for understanding life's chemistry.

2.
Angew Chem Int Ed Engl ; : e202412534, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119638

RESUMO

Cells use transient membraneless organelles to regulate biological reaction networks. For example, stress granules selectively store mRNA to downregulate protein expression in response to heat or oxidative stress. Models mimicking this active behavior should be established to better understand in vivo regulation involving compartmentalization. Here we use active, complex coacervate droplets as a model for membraneless organelles to spatiotemporally control the activity of a catalytic DNA (DNAzyme). Upon partitioning into these peptide-RNA droplets, the DNAzyme unfolds and loses its ability to catalyze the cleavage of a nucleic acid strand. We can transiently pause the DNAzyme activity upon inducing droplet formation with fuel. After fuel consumption, the DNAzyme activity autonomously restarts. We envision this system could be used to up and downregulate multiple reactions in a network, helping understand the complexity of a cell's pathways. By creating a network where the DNAzyme could reciprocally regulate the droplet properties, we would have a powerful tool for engineering synthetic cells.

3.
Angew Chem Int Ed Engl ; 63(30): e202406094, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-38743852

RESUMO

Lipids spontaneously assemble into vesicle-forming membranes. Such vesicles serve as compartments for even the simplest living systems. Vesicles have been extensively studied for constructing synthetic cells or as models for protocells-the cells hypothesized to have existed before life. These compartments exist almost always close to equilibrium. Life, however, exists out of equilibrium. In this work, we studied vesicle-based compartments regulated by a non-equilibrium chemical reaction network that converts activating agents. In this way, the compartments require a constant or periodic supply of activating agents to sustain themselves. Specifically, we use activating agents to condense carboxylates and phosphate esters into acyl phosphate-based lipids that form vesicles. These vesicles can only be sustained when condensing agents are present; without them, they decay. We demonstrate that the chemical reaction network can operate on prebiotic activating agents, opening the door to prebiotically plausible, self-sustainable protocells that compete for resources. In future work, such protocells should be endowed with a genotype, e.g., self-replicating RNA structures, to alter the protocell's behavior. Such protocells could enable Darwinian evolution in a prebiotically plausible chemical system.


Assuntos
Células Artificiais , Células Artificiais/química , Células Artificiais/metabolismo , Fosfatos/química
4.
J Am Chem Soc ; 145(12): 6880-6887, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36931284

RESUMO

In life, molecular architectures, like the cytoskeletal proteins or the nucleolus, catalyze the conversion of chemical fuels to perform their functions. For example, tubulin catalyzes the hydrolysis of GTP to form a dynamic cytoskeletal network. In contrast, myosin uses the energy obtained by catalyzing the hydrolysis of ATP to exert forces. Artificial examples of such beautiful architectures are scarce partly because synthetic chemically fueled reaction cycles are relatively rare. Here, we introduce a new chemical reaction cycle driven by the hydration of a carbodiimide. Unlike other carbodiimide-fueled reaction cycles, the proposed cycle forms a transient 5(4H)-oxazolone. The reaction cycle is efficient in forming the transient product and is robust to operate under a wide range of fuel inputs, pH, and temperatures. The versatility of the precursors is vast, and we demonstrate several molecular designs that yield chemically fueled droplets, fibers, and crystals. We anticipate that the reaction cycle can offer a range of other assemblies and, due to its versatility, can also be incorporated into molecular motors and machines.

5.
Angew Chem Int Ed Engl ; 62(41): e202309318, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37549224

RESUMO

Complex coacervation describes the liquid-liquid phase separation of oppositely charged polymers. Active coacervates are droplets in which one of the electrolyte's affinity is regulated by chemical reactions. These droplets are particularly interesting because they are tightly regulated by reaction kinetics. For example, they serve as a model for membraneless organelles that are also often regulated by biochemical transformations such as post-translational modifications. They are also a great protocell model or could be used to synthesize life-they spontaneously emerge in response to reagents, compete, and decay when all nutrients have been consumed. However, the role of the unreactive building blocks, e.g., the polymeric compounds, is poorly understood. Here, we show the important role of the chemically innocent, unreactive polyanion of our chemically fueled coacervation droplets. We show that the polyanion drastically influences the resulting droplets' life cycle without influencing the chemical reaction cycle-either they are very dynamic or have a delayed dissolution. Additionally, we derive a mechanistic understanding of our observations and show how additives and rational polymer design help to create the desired coacervate emulsion life cycles.

6.
J Am Chem Soc ; 144(48): 21939-21947, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36442850

RESUMO

Molecular machines, such as ATPases or motor proteins, couple the catalysis of a chemical reaction, most commonly hydrolysis of nucleotide triphosphates, to their conformational change. In essence, they continuously convert a chemical fuel to drive their motion. An outstanding goal of nanotechnology remains to synthesize a nanomachine with similar functions, precision, and speed. The field of DNA nanotechnology has given rise to the engineering precision required for such a device. Simultaneously, the field of systems chemistry developed fast chemical reaction cycles that convert fuel to change the function of molecules. In this work, we thus combined a chemical reaction cycle with the precision of DNA nanotechnology to yield kinetic control over the conformational state of a DNA hairpin. Future work on such systems will result in out-of-equilibrium DNA nanodevices with precise functions.


Assuntos
DNA , Nanotecnologia
7.
Biotechnol Bioeng ; 119(3): 895-906, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958130

RESUMO

Conventional bioreactors are typically developed for the production of planktonic bacteria or submerged biofilms. In contrast, reactors for the continuous production of biofilms at the solid-air interface are scarce, and they require specific conditions since the bacteria need to attach firmly to the surface and require a permanent supply of moisture and nutrients from below. Recently, research from the field of civil engineering has pinpointed an increased need for the production of terrestrial biofilms: several variants of Bacillus subtilis biofilms have been shown to be useful additives to mortar that increase the water repellency, and, thus, the lifetime of the cementitious material. The bioreactor introduced here allows for the continuous production of such bacterial biofilms at the solid-air interface, and they have virtually identical properties as biofilms cultivated via classical microbiological techniques. This is made possible by equipping a rotating cylinder with a porous membrane that acts as a solid growth substrate the bacterial biomass can form on. In this configuration, nutrient supply is enabled via diffusive transport of a suitable growth medium from the core volume of the cylindrical reactor to the membrane surface. In addition to cultivating bacterial biofilms, the versatile and adaptable set up introduced here also enables the growth of other microbial organisms including the yeast Saccharomyces cerevisiae and the fungus Penicillium chrysogenum.


Assuntos
Biofilmes , Reatores Biológicos , Bactérias , Biomassa , Reatores Biológicos/microbiologia , Fungos
8.
Chirality ; 34(3): 550-558, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34989021

RESUMO

The ICD phenomenon has drawn a lot of attention in recent years in applicable fields such as chiral sensing and chiroptical devices. In this work, we first gaze at the issues of thin spin-coated films not being able to deliver consistent ICD signals. A hypothesis of the underlying problem is proposed through a brief elucidation of the spin-coating process. To confirm and eliminate the uncontrollable dynamic factors with spin coating, we then dedicate our efforts to develop a new gel system based on chiral L-/D-N',N'-Dibenzoyl-cystine. Achiral dye molecules are intercalated in a DBC gel through a "one-step" preparation procedure. Compared to the former spin-coating system, significantly improved reproducibility of the new gel system is demonstrated. Besides, the ICD signals can be customized in a broad spectral range (wavelength tunability) by substituting dye molecules. Finally, we discuss the potential applications of this interesting system.


Assuntos
Dicroísmo Circular , Géis , Reprodutibilidade dos Testes , Estereoisomerismo
9.
Angew Chem Int Ed Engl ; 61(32): e202203928, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35657164

RESUMO

Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet-based microfluidics to encapsulate a fuel-driven cycle that drives phase separation into coacervate-based droplets to overcome this challenge. This approach enables the analysis of every coacervate-based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate-based droplets and their properties. We observed that coacervate-based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate-based droplets enables future selection- or evolution-based studies.


Assuntos
Microfluídica , Cinética , Microfluídica/métodos
10.
Angew Chem Int Ed Engl ; 61(46): e202211905, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36067054

RESUMO

Membraneless organelles are droplets in the cytosol that are regulated by chemical reactions. Increasing studies suggest that they are internally organized. However, how these subcompartments are regulated remains elusive. Herein, we describe a complex coacervate-based model composed of two polyanions and a short peptide. With a chemical reaction cycle, we control the affinity of the peptide for the polyelectrolytes leading to distinct regimes inside the phase diagram. We study the transitions from one regime to another and identify new transitions that can only occur under kinetic control. Finally, we show that the chemical reaction cycle controls the liquidity of the droplets offering insights into how active processes inside cells play an important role in tuning the liquid state of membraneless organelles. Our work demonstrates that not only thermodynamic properties but also kinetics should be considered in the organization of multiple phases in droplets.


Assuntos
Peptídeos , Cinética
11.
J Am Chem Soc ; 143(20): 7719-7725, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33978418

RESUMO

In dynamic combinatorial libraries, molecules react with each other reversibly to form intricate networks under thermodynamic control. In biological systems, chemical reaction networks operate under kinetic control by the transduction of chemical energy. We thus introduced the notion of energy transduction, via chemical reaction cycles, to a dynamic combinatorial library. In the library, monomers can be oligomerized, oligomers can be deoligomerized, and oligomers can recombine. Interestingly, we found that the dynamics of the library's components were dominated by transacylation, which is an equilibrium reaction. In contrast, the library's dynamics were dictated by fuel-driven activation, which is a nonequilibrium reaction. Finally, we found that self-assembly can play a large role in affecting the reaction's kinetics via feedback mechanisms. The interplay of the simultaneously operating reactions and feedback mechanisms can result in hysteresis effects in which the outcome of the competition for fuel depends on events that occurred in the past. In future work, we envision diversifying the library by modifying building blocks with catalytically active motifs and information-containing monomers.

12.
J Am Chem Soc ; 143(12): 4782-4789, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33750125

RESUMO

Complex coacervated-based assemblies form when two oppositely charged polyelectrolytes combine to phase separate into a supramolecular architecture. These architectures range from complex coacervate droplets, spherical and worm-like micelles, to vesicles. These assemblies are widely applied, for example, in the food industry, and as underwater or medical adhesives, but they can also serve as a great model for biological assemblies. Indeed, biology relies on complex coacervation to form so-called membraneless organelles, dynamic and transient droplets formed by the coacervation of nucleic acids and proteins. To regulate their function, membraneless organelles are dynamically maintained by chemical reaction cycles, including phosphorylation and dephosphorylation, but exact mechanisms remain elusive. Recently, some model systems also regulated by chemical reaction cycles have been introduced, but how to design such systems and how molecular design affects their properties is unclear. In this work, we test a series of cationic peptides for their chemically fueled coacervation, and we test how their design can affect the dynamics of assembly and disassembly of the emerging structures. We combine them with both homo- and block copolymers and study the morphologies of the assemblies, including morphological transitions that are driven by the chemical reaction cycle. We deduce heuristic design rules that can be applied to other chemically regulated systems. These rules will help develop membraneless organelle model systems and lead to exciting new applications of complex coacervate-based examples like temporary adhesives.


Assuntos
Peptídeos/química , Polieletrólitos/química , Modelos Moleculares , Estrutura Molecular
13.
J Am Chem Soc ; 142(33): 14142-14149, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32787245

RESUMO

In living systems, fuel-driven assembly is ubiquitous, and examples include the formation of microtubules or actin bundles. These structures have inspired researchers to develop synthetic counterparts, leading to exciting new behaviors in man-made structures. However, most of these examples are serendipitous discoveries because clear design rules do not yet exist. In this work, we show design rules to drive peptide self-assembly regulated by a fuel-driven reaction cycle. We demonstrate that, by altering the ratio of attractive to repulsive interactions between peptides, the behavior can be toggled between no assembly, fuel-driven dissipative self-assembly, and a state in which the system is permanently assembled. These rules can be generalized for other peptide sequences. In addition, our finding is explained in the context of the energy landscapes of self-assembly. We anticipate that our design rules can further aid the field and help the development of autonomous materials with life-like properties.


Assuntos
Peptídeos/síntese química , Estrutura Molecular , Peptídeos/química
14.
J Am Chem Soc ; 142(49): 20837-20844, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33237773

RESUMO

In biology, self-assembly of proteins and energy-consuming reaction cycles are intricately coupled. For example, tubulin is activated and deactivated for assembly by a guanosine triphosphate (GTP)-driven reaction cycle, and the emerging microtubules catalyze this reaction cycle by changing the microenvironment of the activated tubulin. Recently, synthetic analogs of chemically fueled assemblies have emerged, but examples in which assembly and reaction cycles are reciprocally coupled remain rare. In this work, we report a peptide that can be activated and deactivated for self-assembly. The emerging assemblies change the microenvironment of their building blocks, which consequently accelerate the rates of building block deactivation and reactivation. We quantitatively understand the mechanisms at play, and we are thus able to tune the catalysis by molecular design of the peptide precursor.

15.
J Am Chem Soc ; 141(25): 9872-9878, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31194525

RESUMO

We describe the self-assembly of gold and iron oxide nanoparticles regulated by a chemical reaction cycle that hydrolyzes a carbodiimide-based fuel. In a reaction with the chemical fuel, the nanoparticles are chemically activated to a state that favors assembling into clusters. The activated state is metastable and decays to the original precursor reversing the assembly. The dynamic interplay of activation and deactivation results in a material of which the behavior is regulated by the amount of fuel added to the system; they either did not assemble, assembled transiently, or assembled permanently in kinetically trapped clusters. Because of the irreversibility of the kinetically trapped clusters, we found that the behavior of the self-assembly was prone to hysteresis effects. The final state of the system in the energy landscape depended on the pathway of preparation. For example, when a large amount of fuel was added at once, the material would end up kinetically trapped in a local minimum. When the same amount of fuel was added in small batches with sufficient time for the system to re-equilibrate, the final state would be the global minimum. A better understanding of pathway complexity in the energy landscape is crucial for the development of fuel-driven supramolecular materials.

16.
Langmuir ; 34(22): 6556-6569, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29758156

RESUMO

This study reports the preparation of functional bioinorganic hybrid materials exhibiting catalytic activity and photoluminescent properties arising from the combination of enzymes and freestanding silicon-based nanoparticles. The hybrid materials reported herein have potential applications in biological sensing/imaging and theranostics, as they combine long-lived silicon-based nanoparticle photoluminescence with substrate-specific enzymatic activity. Thermal hydrosilylation of undecenoic acid and alkene-terminated poly(ethylene oxide) with hydride-terminated silicon nanocrystals afforded nanoparticles functionalized with a mixed surface made up of carboxylic acid and poly(ethylene oxide) moieties. These silicon-based nanoparticles were subsequently conjugated with prototypical enzymes through the carbodiimide-mediated amide coupling reaction in order to form bioinorganic hybrids that display solubility and photostability in phosphate buffer, photoluminescence (λmax = 630 nm), and enzymatic activity. They were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dynamic light scattering analysis (DLS), photoluminescence spectroscopy, and pertinent enzyme activity assays.


Assuntos
Enzimas/metabolismo , Nanopartículas/química , Silício/química , Técnicas Biossensoriais , Luminescência , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Soft Matter ; 14(23): 4852-4859, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29845136

RESUMO

Dissipative self-assembly is a process in which energy-consuming chemical reaction networks drive the assembly of molecules. Prominent examples from biology include the GTP-fueled microtubule and ATP-driven actin assembly. Pattern formation and oscillatory behavior are some of the unique properties of the emerging assemblies. While artificial counterparts exist, researchers have not observed such complex responses. One reason for the missing complexity is the lack of feedback mechanisms of the assemblies on their chemical reaction network. In this work, we describe the dissipative self-assembly of colloids that protect the hydrolysis of their building blocks. The mechanism of inhibition is generalized and explored for other building blocks. We show that we can tune the level of inhibition by the assemblies. Finally, we show that the robustness of the assemblies towards starvation is affected by the degree of inhibition.

18.
Chem Soc Rev ; 46(18): 5519-5535, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28703817

RESUMO

The use of dissipative self-assembly driven by chemical reaction networks for the creation of unique structures is gaining in popularity. In dissipative self-assembly, precursors are converted into self-assembling building blocks by the conversion of a source of energy, typically a photon or a fuel molecule. The self-assembling building block is intrinsically unstable and spontaneously reverts to its original precursor, thus giving the building block a limited lifetime. As a result, its presence is kinetically controlled, which gives the associated supramolecular material unique properties. For instance, formation and properties of these materials can be controlled over space and time by the kinetics of the coupled reaction network, they are autonomously self-healing and they are highly adaptive to small changes in their environment. By means of an example of a biological dissipative self-assembled material, the unique concepts at the basis of these supramolecular materials will be discussed. We then review recent efforts towards man-made dissipative assembly of structures and how their unique material properties have been characterized. In order to help further the field, we close with loosely defined design rules that are at the basis of the discussed examples.

19.
Angew Chem Int Ed Engl ; 57(32): 10011-10014, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30003659

RESUMO

For the 53rd time, the Bürgenstock Conference gathered some of the most gifted scientists and rising stars in organic, physical, and bioorganic chemistry. Orchestrated by Ilan Marek (President) and his successor, Véronique Gouverneur, the synergy between art and science took place in Brunnen, Switzerland, with a beatiful view over Lake Lucerne.

20.
Angew Chem Int Ed Engl ; 57(44): 14608-14612, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30040877

RESUMO

Solutions of silicon nanocrystals (SiNCs) are used in a diverse range of applications because of their tunable photoluminescence, biocompatibility, and the abundance of Si. In dissipative supramolecular materials, self-assembly of molecules or nanoparticles is driven by a chemical reaction network that irreversible consumes fuel. The properties of the emerging structures are controlled by the kinetics of the underlying chemical reaction network. Herein, we demonstrate the dissipative self-assembly of photoluminescent SiNCs driven by a chemical fuel. A chemical reaction induces self-assembly of the water-soluble SiNCs. However, the assemblies are transient, and when the chemical reaction network runs out of fuel, the SiNCs disassemble. The lifetime of the assemblies is controlled by the amount of fuel added. As an application of the transient supramolecular material, we demonstrate that the platform can be used to control the delayed uptake of the nanocrystals by mammalian cells.


Assuntos
Nanopartículas/química , Silício/química , Cinética , Luminescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA