Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Langmuir ; 31(1): 442-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25485553

RESUMO

Hydrogels that are pH-sensitive and partially cross-linked by cobalt ferrite nanoparticles exhibit remarkable remanent magnetization behavior. The magnetic fields measured outside our thin disks of ferrogel are weak, but in the steady state, the field dependence on the magnetic content of the gels and the measurement geometry is as expected from theory. In contrast, the time-dependent behavior is surprisingly complicated. During swelling, the remanent field first rapidly increases and then slowly decreases. We ascribe the swelling-induced field enhancement to a change in the average orientation of magnetic dipolar structures, while the subsequent field drop is due to the decreasing concentration of nanoparticles. During shrinking, the field exhibits a much weaker time dependence that does not mirror the values found during swelling. These observations provide original new evidence for the markedly different spatial profiles of the pH during swelling and shrinking of hydrogels.


Assuntos
Compostos Férricos/química , Fenômenos Magnéticos , Nanopartículas/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Campos Magnéticos
2.
Biomacromolecules ; 16(9): 2840-51, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26237583

RESUMO

Chemoselectively cross-linked hydrogels have recently gained increasing attention for the development of novel, injectable biomaterials given their limited side reactions. In this study, we compared the properties of hydrogels obtained by native chemical ligation (NCL) and its recently described variation termed oxo-ester-mediated native chemical ligation (OMNCL) in combination with temperature-induced physical gelation. Triblock copolymers consisting of cysteine functionalities, thermoresponsive N-isopropylacrylamide (NIPAAm) units and degradable moieties were mixed with functionalized poly(ethylene glycol) (PEG) cross-linkers. Thioester or N-hydroxysuccinimide (NHS) functionalities attached to PEG reacted with cysteine residues of the triblock copolymers via either an NCL or OMNCL pathway. The combined physical and chemical cross-linking resulted in rapid network formation and mechanically strong hydrogels. Stiffness of the hydrogels was highest for thermogels that were covalently linked via OMNCL. Specifically, the storage modulus after 4 h reached a value of 26 kPa, which was over a 100 times higher than hydrogels formed by solely thermal physical interactions. Endothelial cells showed high cell viability of 98 ± 2% in the presence of OMNCL cross-linked hydrogels after 16 h of incubation, in contrast to a low cell viability (13 ± 7%) for hydrogels obtained by NCL cross-linking. Lysozyme was loaded in the gels and after 2 days more than 90% was released, indicating that the cross-linking reaction was indeed chemoselective as the protein was not covalently grafted to the hydrogel network. Moreover, the degradation rates of these hydrogels under physiological conditions could be tailored from 12 days up to 6 months by incorporation of a monomer containing a hydrolyzable lactone ring in the thermosensitive triblock copolymer. These results demonstrate a high tunability of mechanical properties and degradation rates of these in situ forming hydrogels that could be used for a variety of biomedical applications.


Assuntos
Acrilamidas/química , Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Teste de Materiais , Polietilenoglicóis/química , Animais , Linhagem Celular , Camundongos
3.
ACS Biomater Sci Eng ; 9(2): 760-772, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36681938

RESUMO

Hydrogels have been suggested as novel drug delivery systems for sustained release of therapeutic proteins in various neurological disorders. The main advantage these systems offer is the controlled, prolonged exposure to a therapeutically effective dose of the released drug after a single intracerebral injection. Characterization of controlled release of therapeutics from a hydrogel is generally performed in vitro, as current methods do not allow for in vivo measurements of spatiotemporal distribution and release kinetics of a loaded protein. Importantly, the in vivo environment introduces many additional variables and factors that cannot be effectively simulated under in vitro conditions. To address this, in the present contribution, we developed a noninvasive in vivo magnetic resonance imaging (MRI) method to monitor local protein release from two injected hydrogels of the same chemical composition but different initial water contents. We designed a biodegradable hydrogel formulation composed of low and high concentration thermosensitive polymer and thiolated hyaluronic acid, which is liquid at room temperature and forms a gel due to a combination of physical and chemical cross-linking upon injection at 37 °C. The in vivo protein release kinetics from these gels were assessed by MRI analysis utilizing a model protein labeled with an MR contrast agent, i.e. gadolinium-labeled albumin (74 kDa). As proof of principle, the release kinetics of the hydrogels were first measured with MRI in vitro. Subsequently, the protein loaded hydrogels were administered in male Wistar rat brains and the release in vivo was monitored for 21 days. In vitro, the thermosensitive hydrogels with an initial water content of 81 and 66% released 64 ± 3% and 43 ± 3% of the protein loading, respectively, during the first 6 days at 37 °C. These differences were even more profound in vivo, where the thermosensitive hydrogels released 83 ± 16% and 57 ± 15% of the protein load, respectively, 1 week postinjection. Measurement of volume changes of the gels over time showed that the thermosensitive gel with the higher polymer concentration increased more than 4-fold in size in vivo after 3 weeks, which was substantially different from the in vitro behavior where a volume change of 35% was observed. Our study demonstrates the potential of MRI to noninvasively monitor in vivo intracerebral protein release from a locally administered in situ forming hydrogel, which could aid in the development and optimization of such drug delivery systems for brain disorders.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Ratos , Animais , Masculino , Hidrogéis/química , Ratos Wistar , Polímeros , Proteínas , Imageamento por Ressonância Magnética
4.
Biomacromolecules ; 13(9): 2821-30, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22881074

RESUMO

The impact of synthesis and solution formulation parameters on the swelling and mechanical properties of a novel class of thermally and chemically gelling hydrogels combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine cross-linking macromers was evaluated. Through variation of network hydrophilicity and capacity for chain rearrangement, the often problematic tendency of thermogelling hydrogels to undergo significant syneresis was addressed. The demonstrated ability to tune postformation dimensional stability easily at both the synthesis and formulation stages represents a significant novel contribution toward efforts to utilize poly(N-isopropylacrylamide)-based polymers as injectable biomaterials. Furthermore, the cytocompatibility of the hydrogel system under relevant conditions was established while demonstrating time- and dose-dependent cytotoxicity at high solution osmolality. Such injectable in situ forming degradable hydrogels with tunable water content are promising candidates for many tissue-engineering applications, particularly for cell delivery to promote rapid tissue regeneration in non-load-bearing defects.


Assuntos
Acrilamidas/química , Materiais Biocompatíveis/síntese química , Dendrímeros/química , Polímeros/química , Engenharia Tecidual/métodos , Resinas Acrílicas , Animais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Injeções , Espectroscopia de Ressonância Magnética , Teste de Materiais , Concentração Osmolar , Ratos , Reologia , Temperatura , Alicerces Teciduais , Água
5.
Biomacromolecules ; 13(6): 1908-15, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22554407

RESUMO

Novel, injectable hydrogels were developed that solidify through a physical and chemical dual-gelation mechanism upon preparation and elevation of temperature to 37 °C. A thermogelling, poly(N-isopropylacrylamide)-based macromer with pendant epoxy rings and a hydrolytically degradable polyamidoamine-based diamine cross-linker were synthesized, characterized, and combined to produce in situ forming hydrogel constructs. Network formation through the epoxy-amine reaction was shown to be rapid and facile, and the progressive incorporation of the hydrophilic polyamidoamine cross-linker into the hydrogel was shown to mitigate the often problematic tendency of thermogelling materials to undergo significant postformation gel syneresis. The results suggest that this novel class of injectable hydrogels may be attractive substrates for tissue engineering applications due to the synthetic versatility of the component materials and beneficial hydrogel gelation kinetics and stability.


Assuntos
Hidrogéis/química , Hidrogéis/síntese química , Temperatura , Engenharia Tecidual , Acrilamidas/síntese química , Acrilamidas/química , Resinas Acrílicas , Géis/síntese química , Géis/química , Poliaminas/síntese química , Poliaminas/química , Polímeros/síntese química , Polímeros/química
6.
Langmuir ; 27(16): 9843-8, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21755924

RESUMO

We present experimental proof that so-called "flowerlike micelles" exist and that they have some distinctly different properties compared to their "starlike" counterparts. Amphiphilic AB diblock and BAB triblock copolymers consisting of poly(ethylene glycol) (PEG) as hydrophilic A block and thermosensitive poly(N-isopropylacrylamide) (pNIPAm) B block(s) were synthesized via atom transfer radical polymerization (ATRP). In aqueous solutions, both block copolymer types form micelles above the cloud point of pNIPAm. Static and dynamic light scattering measurements in combination with NMR relaxation experiments proved the existence of flowerlike micelles based on pNIPAm(16kDa)-PEG(4kDa)-pNIPAm(16kDa) which had a smaller radius and lower mass and aggregation number than starlike micelles based on mPEG(2kDa)-pNIPAm(16kDa). Furthermore, the PEG surface density was much lower for the flowerlike micelles, which we attribute to the looped configuration of the hydrophilic PEG block. (1)H NMR relaxation measurements showed biphasic T(2) relaxation for PEG, indicating rigid PEG segments close to the micelle core and more flexible distal segments. Even the flexible distal segments were shown to have a lower mobility in the flowerlike micelles compared to the starlike micelles, indicating strain due to loop formation. Taken together, it is demonstrated that self-assemblies of BAB triblock copolymers have their hydrophilic block in a looped conformation and thus indeed adopt a flowerlike conformation.


Assuntos
Luz , Espectroscopia de Ressonância Magnética/métodos , Micelas , Espalhamento de Radiação
7.
J Mater Chem B ; 3(46): 9067-9078, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263038

RESUMO

Progress in biofabrication technologies is mainly hampered by the limited number of suitable hydrogels that can act as bioinks. Here, we present a new bioink for 3D-printing, capable of forming large, highly defined constructs. Hydrogel formulations consisted of a thermoresponsive polymer mixed with a poly(ethylene glycol) (PEG) or a hyaluronic acid (HA) cross-linker with a total polymer concentration of 11.3 and 9.1 wt% respectively. These polymer solutions were partially cross-linked before plotting by a chemoselective reaction called oxo-ester mediated native chemical ligation, yielding printable formulations. Deposition on a heated plate of 37 °C resulted in the stabilization of the construct due to the thermosensitive nature of the hydrogel. Subsequently, further chemical cross-linking of the hydrogel precursors proceeded after extrusion to form mechanically stable hydrogels that exhibited a storage modulus of 9 kPa after 3 hours. Flow and elastic properties of the polymer solutions and hydrogels were analyzed under similar conditions to those used during the 3D-printing process. These experiments showed the ability to extrude the hydrogels, as well as their rapid recovery after applied shear forces. Hydrogels were printed in grid-like structures, hollow cones and a model representing a femoral condyle, with a porosity of 48 ± 2%. Furthermore, an N-hydroxysuccinimide functionalized thermoplastic poly-ε-caprolactone (PCL) derivative was successfully synthesized and 3D-printed. We demonstrated that covalent grafting of the developed hydrogel to the thermoplastic reinforced network resulted in improved mechanical properties and yielded high construct integrity. Reinforced constructs also containing hyaluronic acid showed high cell viability of chondrocytes, underlining their potential for further use in regenerative medicine applications.

8.
Tissue Eng Part A ; 21(7-8): 1195-206, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25557049

RESUMO

Decellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found their way to clinical applications, their use in the engineering of cartilage tissue has only been explored to a limited extent. We set out to generate hydrogels from several tissue-derived matrices, as hydrogels are the current preferred cell carriers for cartilage repair. Equine cartilage, meniscus, and tendon tissue was harvested, decellularized, enzymatically digested, and functionalized with methacrylamide groups. After photo-cross-linking, these tissue digests were mechanically characterized. Next, gelatin methacrylamide (GelMA) hydrogel was functionalized with these methacrylated tissue digests. Equine chondrocytes and mesenchymal stromal cells (MSCs) (both from three donors) were encapsulated and cultured in vitro up to 6 weeks. Gene expression (COL1A1, COL2A1, ACAN, MMP-3, MMP-13, and MMP-14), cartilage-specific matrix formation, and hydrogel stiffness were analyzed after culture. The cartilage, meniscus, and tendon digests were successfully photo-cross-linked into hydrogels. The addition of the tissue-derived matrices to GelMA affected chondrogenic differentiation of MSCs, although no consequent improvement was demonstrated. For chondrocytes, the tissue-derived matrix gels performed worse compared to GelMA alone. This work demonstrates for the first time that native tissues can be processed into crosslinkable hydrogels for the engineering of tissues. Moreover, the differentiation of encapsulated cells can be influenced in these stable, decellularized matrix hydrogels.


Assuntos
Cartilagem/citologia , Reagentes de Ligações Cruzadas/farmacologia , Hidrogéis/farmacologia , Meniscos Tibiais/citologia , Tendões/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Força Compressiva/efeitos dos fármacos , DNA/metabolismo , Módulo de Elasticidade/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Cavalos , Células-Tronco Mesenquimais/citologia
9.
J Control Release ; 190: 254-73, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24746623

RESUMO

Over the past decades, significant progress has been made in the field of hydrogels as functional biomaterials. Biomedical application of hydrogels was initially hindered by the toxicity of crosslinking agents and limitations of hydrogel formation under physiological conditions. Emerging knowledge in polymer chemistry and increased understanding of biological processes resulted in the design of versatile materials and minimally invasive therapies. Hydrogel matrices comprise a wide range of natural and synthetic polymers held together by a variety of physical or chemical crosslinks. With their capacity to embed pharmaceutical agents in their hydrophilic crosslinked network, hydrogels form promising materials for controlled drug release and tissue engineering. Despite all their beneficial properties, there are still several challenges to overcome for clinical translation. In this review, we provide a historical overview of the developments in hydrogel research from simple networks to smart materials.


Assuntos
Preparações de Ação Retardada , Portadores de Fármacos , Hidrogéis , Materiais Biocompatíveis/história , Preparações de Ação Retardada/história , Portadores de Fármacos/química , Portadores de Fármacos/história , História do Século XX , História do Século XXI , Humanos , Hidrogéis/química , Hidrogéis/história , Polietilenoglicóis , Poli-Hidroxietil Metacrilato
10.
Acta Biomater ; 10(6): 2602-11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24590160

RESUMO

Hydrogels can provide a suitable environment for tissue formation by embedded cells, which makes them suitable for applications in regenerative medicine. However, hydrogels possess only limited mechanical strength, and must therefore be reinforced for applications in load-bearing conditions. In most approaches the reinforcing component and the hydrogel network have poor interactions and the synergetic effect of both materials on the mechanical properties is not effective. Therefore, in the present study, a thermoplastic polymer blend of poly(hydroxymethylglycolide-co-ε-caprolactone)/poly(ε-caprolactone) (pHMGCL/PCL) was functionalized with methacrylate groups (pMHMGCL/PCL) and covalently grafted to gelatin methacrylamide (gelMA) hydrogel through photopolymerization. The grafting resulted in an at least fivefold increase in interface-binding strength between the hydrogel and the thermoplastic polymer material. GelMA constructs were reinforced with three-dimensionally printed pHMGCL/PCL and pMHMGCL/PCL scaffolds and tested in a model for a focal articular cartilage defect. In this model, covalent bonds at the interface of the two materials resulted in constructs with an improved resistance to repeated axial and rotational forces. Moreover, chondrocytes embedded within the constructs were able to form cartilage-specific matrix both in vitro and in vivo. Thus, by grafting the interface of different materials, stronger hybrid cartilage constructs can be engineered.


Assuntos
Cartilagem/química , Gelatina/química , Hidrogéis , Varredura Diferencial de Calorimetria , Células Cultivadas , Criança , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA