RESUMO
Hormones in biological media reveal endocrine activity related to development, reproduction, disease and stress on different timescales1. Serum provides immediate circulating concentrations2, whereas various tissues record steroid hormones accumulated over time3,4. Hormones have been studied in keratin, bones and teeth in modern5-8 and ancient contexts9-12; however, the biological significance of such records is subject to ongoing debate10,13-16, and the utility of tooth-associated hormones has not previously been demonstrated. Here we use liquid chromatography with tandem mass spectrometry paired with fine-scale serial sampling to measure steroid hormone concentrations in modern and fossil tusk dentin. An adult male African elephant (Loxodonta africana) tusk shows periodic increases in testosterone that reveal episodes of musth17-19, an annually recurring period of behavioural and physiological changes that enhance mating success20-23. Parallel assessments of a male woolly mammoth (Mammuthus primigenius) tusk show that mammoths also experienced musth. These results set the stage for wide-ranging studies using steroids preserved in dentin to investigate development, reproduction and stress in modern and extinct mammals. Because dentin grows by apposition, resists degradation, and often contains growth lines, teeth have advantages over other tissues that are used as records of endocrine data. Given the low mass of dentin powder required for analytical precision, we anticipate dentin-hormone studies to extend to smaller animals. Thus, in addition to broad applications in zoology and palaeontology, tooth hormone records could support medical, forensic, veterinary and archaeological studies.
Assuntos
Elefantes , Fósseis , Mamutes , Testosterona , Dente , Animais , Masculino , Elefantes/anatomia & histologia , Elefantes/metabolismo , Mamutes/anatomia & histologia , Mamutes/metabolismo , Esteroides/análise , Esteroides/metabolismo , Testosterona/análise , Testosterona/metabolismo , Dente/química , Dente/metabolismo , Dentina/química , Dentina/metabolismoRESUMO
In this study, we aimed to achieve three objectives: (1) to precisely characterize the body plans of Elephantidae and other large herbivorous mammals; (2) based on this analysis, to determine whether the body plans of the extinct woolly mammoth (Mammuthus primigenius) and steppe mammoth (M. trogontherii) differ from those of modern-day Elephantidae: the Asian elephant (Elephas maximus), the African bush (Loxodonta africana), and forest (L. cyclotis) elephants; (3) to analyze how the body plans have changed in extant perissodactyls and proboscideans compared with their Paleogene ancestors. To accomplish this, we studied mammoth skeletons from the collections of Russian museums and compared this data with a large number of skeletons of extant elephantids, odd-toed, and even-toed ungulates, as well as their extinct relatives. We showed that three genera of Elephantidae are characterized by a homogeneous body plan, which is markedly different from other large herbivores. Elephantids break the interrelationship, that exists in artiodactyls and perissodactyls, between the total length of the head and neck on one side and the limb's segments on the other. Their limbs are very tall (inferior in this regard among large ungulates only to the giraffe), and, contrary to the other large herbivorous mammals, elongated due to the length of the proximal segments. This allows them to effectively utilize the principle of inverted pendulum (straight-legged walking) in locomotion. The biggest differences in the body plan of mammoths compared with extant elephants are a markedly larger pelvis, elongated fore- and hindlimbs (due to the increased relative length of their proximal segments), and different proportions of the skull. The body plans of plesiomorphic Paleogene proboscideans and perissodactyls differed markedly from their descendants in every body part; these differences are related, on the one hand, to the allometric growth, and on the other hand, to the advancement of the locomotor apparatus in the course of their evolution. The most notable difference in the body plan between Paleogene proboscidean Moeritherium and extant Elephantidae is the ~2-fold increase in relative limb height.
RESUMO
Human colonization of the New World is generally believed to have entailed migrations from Siberia across the Bering isthmus. However, the limited archaeological record of these migrations means that details of the timing, cause and rate remain cryptic. Here, we have used a combination of ancient DNA, 14C dating, hydrogen and oxygen isotopes, and collagen sequencing to explore the colonization history of one of the few other large mammals to have successfully migrated into the Americas at this time: the North American elk (Cervus elaphus canadensis), also known as wapiti. We identify a long-term occupation of northeast Siberia, far beyond the species's current Old World distribution. Migration into North America occurred at the end of the last glaciation, while the northeast Siberian source population became extinct only within the last 500 years. This finding is congruent with a similar proposed delay in human colonization, inferred from modern human mitochondrial DNA, and suggestions that the Bering isthmus was not traversable during parts of the Late Pleistocene. Our data imply a fundamental constraint in crossing Beringia, placing limits on the age and mode of human settlement in the Americas, and further establish the utility of ancient DNA in palaeontological investigations of species histories.
Assuntos
Migração Animal/fisiologia , Clima , Cervos/genética , Filogenia , Alaska , Animais , Sequência de Bases , Teorema de Bayes , Radioisótopos de Carbono/análise , Colágeno/genética , História Antiga , Humanos , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Oceanos e Mares , Isótopos de Oxigênio/análise , Análise de Sequência de DNA , Sibéria , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trítio/análiseRESUMO
The history and palaeoecology of the steppe bison (Bison priscus) remain incompletely understood despite its widespread distribution. Using dental microwear textural analysis (DMTA) and vegetation modelling, we reconstructed the diet and assessed the habitat of steppe bison inhabiting Eurasia and Alaska since the Middle Pleistocene. During the Late Pleistocene, steppe bison occupied a variety of biome types: from the mosaic of temperate summergreen forest and steppe/temperate grassland (Serbia) to the tundra biomes (Siberia and Alaska). Despite the differences in the identified biome types, the diet of steppe bison did not differ significantly among populations in Eurasia. DMTA classified it as a mixed forager in all populations studied. The DMTA of Bb1 bison-a recently identified genetically extinct sister-clade of Bison bonasus-was typical of a highly grazing bovid species and differed from all B. priscus populations. The results of the study temper the common perception that steppe bison were grazers in steppe habitats. The dietary plasticity of the steppe bison was lower when compared with modern European bison and may have played an important role in its extinction, even in the stable tundra biome of eastern Siberia, where it has survived the longest in all of Eurasia.
RESUMO
Climatic oscillations are considered primary factors influencing the distribution of various life forms on Earth. Large species adapted to cold climates are particularly vulnerable to extinction due to the climate changes. In our study, we investigated whether the temperature increase since the Late Pleistocene and the contraction of environmental niche during the Holocene were the main factors contributing to the decreasing range of moose (Alces alces) in Europe. We also examined whether there were significant differences in environmental conditions between areas inhabited by moose in Europe and Asia, that could support the division of moose into western and eastern forms, as suggested by genetic and morphological data. We analysed environmental conditions in locations of 655 subfossil and modern moose occurrences over the past 50,000â¯years in Eurasia. We found that the most limiting climatic factor for the moose distribution since the Late Pleistocene was July temperature. >90â¯% of moose records were found in areas where the mean summer temperature was below 19⯰C, with July temperatures showing over 3 times narrower interquartile range compared to January temperatures. We identified significant differences in environmental conditions between areas inhabited by the European and Asiatic moose. In Europe, the species occurred in regions with milder climates, higher primary productivity, and more frequently within forest biomes compared to Asiatic individuals. The moose range shifted more in the west-east than in the south-north direction during the Holocene climate warming in Europe. We concluded that although the area of suitable moose habitat has increased since 12-8â¯kaâ¯years BP, as demonstrated by environmental niche modeling, the retreat of A. alces in large areas of Europe was likely caused by anthropogenic landscape change (e.g., deforestation) and overhunting by humans during the late Holocene rather than by climate warming during the Pleistocene to Holocene transition.
RESUMO
Extinct woolly rhinoceroses were iconic representatives of the Late Pleistocene mammoth fauna of Eurasia. These animals were characterized by two huge keratinous horns. In adults, the length of the nasal horn often exceeded one meter. The nasal horn of Coelodonta was characterized by an unusual feature for rhinoceroses-the width of its base was considerably narrower than the width of the rugosity area on the nasal bones of the skull. In this study, a new discovery of woolly rhinoceros' nasal horn in the permafrost of Yakutia is described. This specimen shows that the shape of the base of the woolly rhino's nasal horn corresponds well to the shape (length and width) of the nasal rugosity area. The base of the nasal horn of Coelodonta was markedly elongated anteroposteriorly compared to extant rhinoceroses. Its length was about 150% of the width. We therefore suggest that the narrower shape of the nasal horn base in the majority of previously found specimens was associated with secondary damage after burial caused by maceration.
Assuntos
Mamutes , Pergelissolo , Animais , Cabeça , Nariz , Perissodáctilos/anatomia & histologia , Crânio , Mamutes/anatomia & histologiaRESUMO
The brown bear (Ursus arctos) is an iconic carnivoran species of the Northern Hemisphere. Its population history has been studied extensively using mitochondrial markers, which demonstrated signatures of multiple waves of migration, arguably connected with glaciation periods. Among Eurasian brown bears, Siberian populations remain understudied. We have sequenced complete mitochondrial genomes of four ancient (~4.5-40 kya) bears from South Siberia and 19 modern bears from South Siberia and the Russian Far East. Reconstruction of phylogenetic relationships between haplotypes and evaluation of modern population structure have demonstrated that all the studied samples belong to the most widespread Eurasian clade 3. One of the ancient haplotypes takes a basal position relative to the whole of clade 3; the second is basal to the haplogroup 3a (the most common subclade), and two others belong to clades 3a1 and 3b. Modern Siberian bears retain at least some of this diversity; apart from the most common haplogroup 3a, we demonstrate the presence of clade 3b, which was previously found mainly in mainland Eurasia and Northern Japan. Our findings highlight the importance of South Siberia as a refugium for northern Eurasian brown bears and further corroborate the hypothesis of several waves of migration in the Pleistocene.
RESUMO
Over 60% of the modern distribution range of brown bears falls within Russia, yet palaeoecological data from the region remain scarce. Complete modern Russian brown bear mitogenomes are abundant in the published literature, yet examples of their ancient counterparts are absent. Similarly, there is only limited stable isotopic data of prehistoric brown bears from the region. We used ancient DNA and stable carbon (δ13C) and nitrogen (δ15N) isotopes retrieved from five Pleistocene Yakutian brown bears (one Middle Pleistocene and four Late Pleistocene), to elucidate the evolutionary history and palaeoecology of the species in the region. We were able to reconstruct the complete mitogenome of one of the Late Pleistocene specimens, but we were unable to assign it to any of the previously published brown bear mitogenome clades. A subsequent analysis of published mtDNA control region sequences, which included sequences of extinct clades from other geographic regions, assigned the ancient Yakutian bear to the extinct clade 3c; a clade previously identified from Late Quaternary specimens from Eastern Beringia and Northern Spain. Our analyses of stable isotopes showed relatively high δ15N values in the Pleistocene Yakutian brown bears, suggesting a more carnivorous diet than contemporary brown bears from Eastern Beringia.
Assuntos
DNA Antigo , DNA Mitocondrial , Ursidae/genética , Animais , Evolução Biológica , Restos Mortais , Isótopos de Carbono/análise , Carnívoros , História Antiga , Isótopos de Nitrogênio/análise , SibériaRESUMO
In contrast to the abundant fossil record of arctic ground squirrels, Urocitellus parryii, from eastern Beringia, only a limited number of fossils is known from its western part. In 1946, unnamed GULAG prisoners discovered a nest with three mummified carcasses of arctic ground squirrels in the permafrost sediments of the El'ga river, Yakutia, Russia, that were later attributed to a new species, Citellus (Urocitellus) glacialis Vinogr. To verify this assignment and to explore phylogenetic relationships between ancient and present-day arctic ground squirrels, we performed 14C dating and ancient DNA analyses of one of the El'ga mummies and four contemporaneous fossils from Duvanny Yar, northeastern Yakutia. Phylogenetic reconstructions, based on complete cytochrome b gene sequences of five Late Pleistocene arctic ground squirrels and those of modern U. parryii from 21 locations across western Beringia, provided no support for earlier proposals that ancient arctic ground squirrels from Siberia constitute a distinct species. In fact, we observed genetic continuity of the glacialis mitochondrial DNA lineage in modern U. parryii of the Kamchatka peninsula. When viewed in a broader geographic perspective, our findings provide new insights into the genetic history of U. parryii in Late Pleistocene Beringia.
Assuntos
DNA Antigo , Fósseis , Filogenia , Sciuridae/classificação , Sciuridae/genética , Animais , Regiões Árticas , Citocromos b/genética , DNA Mitocondrial , Evolução Molecular , Geografia , Filogeografia , SibériaRESUMO
The frozen bodies of a young woolly mammoth (Mammuthus primigenius), a wild horse (Equus sp.) and a steppe bison (Bison priscus) were recently found in the northern Yakutia (northeastern Siberia). All specimens have preserved bones, skin and soft tissues. Whereas the woolly mammoth and the Pleistocene horse were represented by partial frozen bodies, the steppe bison body was recovered in an absolutely complete state. All specimens were found frozen in the permafrost, with some of the tissues mummified. The wild horse and steppe bison are of Holocene age, and the mammoth is of Late Pleistocene age.