Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 149(4): 847-59, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22541070

RESUMO

Alu RNA accumulation due to DICER1 deficiency in the retinal pigmented epithelium (RPE) is implicated in geographic atrophy (GA), an advanced form of age-related macular degeneration that causes blindness in millions of individuals. The mechanism of Alu RNA-induced cytotoxicity is unknown. Here we show that DICER1 deficit or Alu RNA exposure activates the NLRP3 inflammasome and triggers TLR-independent MyD88 signaling via IL18 in the RPE. Genetic or pharmacological inhibition of inflammasome components (NLRP3, Pycard, Caspase-1), MyD88, or IL18 prevents RPE degeneration induced by DICER1 loss or Alu RNA exposure. These findings, coupled with our observation that human GA RPE contains elevated amounts of NLRP3, PYCARD, and IL18 and evidence of increased Caspase-1 and MyD88 activation, provide a rationale for targeting this pathway in GA. Our findings also reveal a function of the inflammasome outside the immune system and an immunomodulatory action of mobile elements.


Assuntos
Elementos Alu , RNA Helicases DEAD-box/metabolismo , Atrofia Geográfica/imunologia , Atrofia Geográfica/patologia , Inflamassomos/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Ribonuclease III/metabolismo , Animais , Proteínas de Transporte/metabolismo , Atrofia Geográfica/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Epitélio Pigmentado da Retina/patologia , Receptores Toll-Like/metabolismo
2.
PLoS Genet ; 12(5): e1006019, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27148972

RESUMO

Latent TGFß binding proteins (LTBPs) regulate the extracellular availability of latent TGFß. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFß family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFß and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFß family ligand binding protein with the capacity to modify muscle disease through overexpression.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Fatores de Diferenciação de Crescimento/genética , Proteínas de Ligação a TGF-beta Latente/biossíntese , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Miostatina/genética , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Fatores de Diferenciação de Crescimento/metabolismo , Humanos , Proteínas de Ligação a TGF-beta Latente/genética , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miostatina/metabolismo , Naftóis , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Triazinas
3.
Nature ; 471(7338): 325-30, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21297615

RESUMO

Geographic atrophy (GA), an untreatable advanced form of age-related macular degeneration, results from retinal pigmented epithelium (RPE) cell degeneration. Here we show that the microRNA (miRNA)-processing enzyme DICER1 is reduced in the RPE of humans with GA, and that conditional ablation of Dicer1, but not seven other miRNA-processing enzymes, induces RPE degeneration in mice. DICER1 knockdown induces accumulation of Alu RNA in human RPE cells and Alu-like B1 and B2 RNAs in mouse RPE. Alu RNA is increased in the RPE of humans with GA, and this pathogenic RNA induces human RPE cytotoxicity and RPE degeneration in mice. Antisense oligonucleotides targeting Alu/B1/B2 RNAs prevent DICER1 depletion-induced RPE degeneration despite global miRNA downregulation. DICER1 degrades Alu RNA, and this digested Alu RNA cannot induce RPE degeneration in mice. These findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness.


Assuntos
Elementos Alu/genética , RNA Helicases DEAD-box/deficiência , Degeneração Macular/genética , Degeneração Macular/patologia , RNA/genética , RNA/metabolismo , Ribonuclease III/deficiência , Animais , Morte Celular , Sobrevivência Celular , Células Cultivadas , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , MicroRNAs/metabolismo , Dados de Sequência Molecular , Oligonucleotídeos Antissenso , Fenótipo , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Ribonuclease III/genética , Ribonuclease III/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(45): 16082-7, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349431

RESUMO

Geographic atrophy, an advanced form of age-related macular degeneration (AMD) characterized by death of the retinal pigmented epithelium (RPE), causes untreatable blindness in millions worldwide. The RPE of human eyes with geographic atrophy accumulates toxic Alu RNA in response to a deficit in the enzyme DICER1, which in turn leads to activation of the NLRP3 inflammasome and elaboration of IL-18. Despite these recent insights, it is still unclear how RPE cells die during the course of the disease. In this study, we implicate the involvement of Caspase-8 as a critical mediator of RPE degeneration. Here we show that DICER1 deficiency, Alu RNA accumulation, and IL-18 up-regulation lead to RPE cell death via activation of Caspase-8 through a Fas ligand-dependent mechanism. Coupled with our observation of increased Caspase-8 expression in the RPE of human eyes with geographic atrophy, our findings provide a rationale for targeting this apoptotic pathway in this disease.


Assuntos
Elementos Alu , Apoptose , Caspase 8/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas do Olho/metabolismo , Degeneração Macular/metabolismo , RNA/metabolismo , Ribonuclease III/metabolismo , Animais , Caspase 8/genética , RNA Helicases DEAD-box/genética , Proteínas do Olho/genética , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Degeneração Macular/patologia , Camundongos , Camundongos Knockout , RNA/genética , Ribonuclease III/genética , Regulação para Cima/genética
5.
Hum Mol Genet ; 23(25): 6722-31, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25070948

RESUMO

Disruption of the dystrophin complex causes muscle injury, dysfunction, cell death and fibrosis. Excess transforming growth factor (TGF) ß signaling has been described in human muscular dystrophy and animal models, where it is thought to relate to the progressive fibrosis that characterizes dystrophic muscle. We now found that canonical TGFß signaling acutely increases when dystrophic muscle is stimulated to contract. Muscle lacking the dystrophin-associated protein γ-sarcoglycan (Sgcg null) was subjected to a lengthening protocol to produce maximal muscle injury, which produced rapid accumulation of nuclear phosphorylated SMAD2/3. To test whether reducing SMAD signaling improves muscular dystrophy in mice, we introduced a heterozygous mutation of SMAD4 (S4) into Sgcg mice to reduce but not ablate SMAD4. Sgcg/S4 mice had improved body mass compared with Sgcg mice, which normally show a wasting phenotype similar to human muscular dystrophy patients. Sgcg/S4 mice had improved cardiac function as well as improved twitch and tetanic force in skeletal muscle. Functional enhancement in Sgcg/S4 muscle occurred without a reduction in fibrosis, suggesting that intracellular SMAD4 targets may be important. An assessment of genes differentially expressed in Sgcg muscle focused on those encoding calcium-handling proteins and responsive to TGFß since this pathway is a target for mediating improvement in muscular dystrophy. These data demonstrate that excessive TGFß signaling alters cardiac and muscle performance through the intracellular SMAD pathway.


Assuntos
Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Miocárdio/metabolismo , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Peso Corporal , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Testes de Função Cardíaca , Humanos , Proteínas de Ligação a TGF-beta Latente/deficiência , Proteínas de Ligação a TGF-beta Latente/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Mutação , Miocárdio/patologia , Fosforilação , Sarcoglicanas/deficiência , Sarcoglicanas/genética , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Fator de Crescimento Transformador beta/genética
6.
J Biol Chem ; 289(15): 10293-10307, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24563484

RESUMO

Dominant and recessive mutations in collagen VI genes, COL6A1, COL6A2, and COL6A3, cause a continuous spectrum of disorders characterized by muscle weakness and connective tissue abnormalities ranging from the severe Ullrich congenital muscular dystrophy to the mild Bethlem myopathy. Herein, we report the development of a mouse model for dominant collagen VI disorders by deleting exon 16 in the Col6a3 gene. The resulting heterozygous mouse, Col6a3(+/d16), produced comparable amounts of normal Col6a3 mRNA and a mutant transcript with an in-frame deletion of 54 bp of triple-helical coding sequences, thus mimicking the most common molecular defect found in dominant Ullrich congenital muscular dystrophy patients. Biosynthetic studies of mutant fibroblasts indicated that the mutant α3(VI) collagen protein was produced and exerted a dominant-negative effect on collagen VI microfibrillar assembly. The distribution of the α3(VI)-like chains of collagen VI was not altered in mutant mice during development. The Col6a3(+/d16) mice developed histopathologic signs of myopathy and showed ultrastructural alterations of mitochondria and sarcoplasmic reticulum in muscle and abnormal collagen fibrils in tendons. The Col6a3(+/d16) mice displayed compromised muscle contractile functions and thereby provide an essential preclinical platform for developing treatment strategies for dominant collagen VI disorders.


Assuntos
Colágeno Tipo VI/química , Colágeno Tipo VI/genética , Modelos Animais de Doenças , Doenças Musculares/fisiopatologia , Alelos , Animais , Éxons , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Genes Dominantes , Heterozigoto , Camundongos , Camundongos Transgênicos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Contração Muscular , Músculos/fisiopatologia , Doenças Musculares/genética , Distrofias Musculares/genética , Fenótipo , Retículo Sarcoplasmático/patologia , Deleção de Sequência , Tendões/patologia
7.
Proc Natl Acad Sci U S A ; 109(34): 13781-6, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22869729

RESUMO

Deficient expression of the RNase III DICER1, which leads to the accumulation of cytotoxic Alu RNA, has been implicated in degeneration of the retinal pigmented epithelium (RPE) in geographic atrophy (GA), a late stage of age-related macular degeneration that causes blindness in millions of people worldwide. Here we show increased extracellular-signal-regulated kinase (ERK) 1/2 phosphorylation in the RPE of human eyes with GA and that RPE degeneration in mouse eyes and in human cell culture induced by DICER1 depletion or Alu RNA exposure is mediated via ERK1/2 signaling. Alu RNA overexpression or DICER1 knockdown increases ERK1/2 phosphorylation in the RPE in mice and in human cell culture. Alu RNA-induced RPE degeneration in mice is rescued by intravitreous administration of PD98059, an inhibitor of the ERK1/2-activating kinase MEK1, but not by inhibitors of other MAP kinases such as p38 or JNK. These findings reveal a previously unrecognized function of ERK1/2 in the pathogenesis of GA and provide a mechanistic basis for evaluation of ERK1/2 inhibition in treatment of this disease.


Assuntos
Regulação Enzimológica da Expressão Gênica , Degeneração Macular/enzimologia , Degeneração Macular/terapia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , RNA Helicases DEAD-box/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Humanos , Camundongos , Fosforilação , Epitélio Pigmentado da Retina/metabolismo , Ribonuclease III/metabolismo , Transdução de Sinais
8.
J Biol Chem ; 288(20): 14320-14331, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23564457

RESUMO

Collagen VI is a ubiquitously expressed extracellular microfibrillar protein. Its most common molecular form is composed of the α1(VI), α2(VI), and α3(VI) collagen α chains encoded by the COL6A1, COL6A2, and COL6A3 genes, respectively. Mutations in any of the three collagen VI genes cause congenital muscular dystrophy types Bethlem and Ullrich as well as intermediate phenotypes characterized by muscle weakness and connective tissue abnormalities. The α3(VI) collagen α chain has much larger N- and C-globular domains than the other two chains. Its most C-terminal domain can be cleaved off after assembly into microfibrils, and the cleavage product has been implicated in tumor angiogenesis and progression. Here we characterize a Col6a3 mutant mouse that expresses a very low level of a non-functional α3(VI) collagen chain. The mutant mice are deficient in extracellular collagen VI microfibrils and exhibit myopathic features, including decreased muscle mass and contractile force. Ultrastructurally abnormal collagen fibrils were observed in tendon, but not cornea, of the mutant mice, indicating a distinct tissue-specific effect of collagen VI on collagen I fibrillogenesis. Overall, the mice lacking normal α3(VI) collagen chains displayed mild musculoskeletal phenotypes similar to mice deficient in the α1(VI) collagen α chain, suggesting that the cleavage product of the α3(VI) collagen does not elicit essential functions in normal growth and development. The Col6a3 mouse mutant lacking functional α3(VI) collagen chains thus serves as an animal model for COL6A3-related muscular dystrophy.


Assuntos
Colágeno Tipo VI/deficiência , Colágeno Tipo VI/genética , Músculo Esquelético/metabolismo , Tendões/metabolismo , Animais , Colágeno Tipo VI/fisiologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Genótipo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microfibrilas/metabolismo , Músculo Esquelético/fisiopatologia , Mutação , Fenótipo , Tendões/fisiopatologia
9.
Proc Natl Acad Sci U S A ; 108(2): 762-7, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21187385

RESUMO

Duchenne muscular dystrophy (DMD) is caused by mutations in dystrophin and the subsequent disruption of the dystrophin-associated protein complex (DAPC). Utrophin is a dystrophin homolog expressed at high levels in developing muscle that is an attractive target for DMD therapy. Here we show that the extracellular matrix protein biglycan regulates utrophin expression in immature muscle and that recombinant human biglycan (rhBGN) increases utrophin expression in cultured myotubes. Systemically delivered rhBGN up-regulates utrophin at the sarcolemma and reduces muscle pathology in the mdx mouse model of DMD. RhBGN treatment also improves muscle function as judged by reduced susceptibility to eccentric contraction-induced injury. Utrophin is required for the rhBGN therapeutic effect. Several lines of evidence indicate that biglycan acts by recruiting utrophin protein to the muscle membrane. RhBGN is well tolerated in animals dosed for as long as 3 months. We propose that rhBGN could be a therapy for DMD.


Assuntos
Biglicano/química , Regulação da Expressão Gênica , Distrofia Muscular Animal/terapia , Sarcolema/metabolismo , Utrofina/química , Animais , Biglicano/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculos/metabolismo , Proteínas Recombinantes/uso terapêutico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
10.
Mol Ther ; 20(1): 101-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21988875

RESUMO

The discovery of sequence-specific gene silencing by endogenous double-stranded RNAs (dsRNA) has propelled synthetic short-interfering RNAs (siRNAs) to the forefront of targeted pharmaceutical engineering. The first clinical trials utilized 21-nucleotide (nt) siRNAs for the treatment of neovascular age-related macular degeneration (AMD). Surprisingly, these compounds were not formulated for cell permeation, which is required for bona fide RNA interference (RNAi). We showed that these "naked" siRNAs suppress neovascularization in mice not via RNAi but via sequence-independent activation of cell surface Toll-like receptor-3 (TLR3). Here, we demonstrate that noninternalized siRNAs induce retinal degeneration in mice by activating surface TLR3 on retinal pigmented epithelial cells. Cholesterol conjugated siRNAs capable of cell permeation and triggering RNAi also induce the same phenotype. Retinal degeneration was not observed after treatment with siRNAs shorter than 21-nts. Other cytosolic dsRNA sensors are not critical to this response. TLR3 activation triggers caspase-3-mediated apoptotic death of the retinal pigment epithelium (RPE) via nuclear translocation of interferon regulatory factor-3. While this unexpected adverse effect of siRNAs has implications for future clinical trials, these findings also introduce a new preclinical model of geographic atrophy (GA), a late stage of dry AMD that causes blindness in millions worldwide.


Assuntos
Fator Regulador 3 de Interferon/metabolismo , RNA Interferente Pequeno/toxicidade , Degeneração Retiniana/induzido quimicamente , Receptor 3 Toll-Like/metabolismo , Animais , Caspase 3/metabolismo , Morte Celular/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais
11.
Neurol Ther ; 12(6): 1961-1979, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37682512

RESUMO

INTRODUCTION: Much of the current literature on treatment patterns and disability progression in multiple sclerosis (MS) does not distinguish between the relapsing-remitting and progressive subtypes (including primary [PPMS] and secondary progressive MS [SPMS]), or between active/nonactive disease. Current treatment options for progressive MS are limited, with only one approved product for PPMS and none specifically for nonactive SPMS. Here we report treatment patterns, disability progression, and unmet needs among patients with active and nonactive PPMS and SPMS. METHODS: The annual, cross-sectional survey from the Adelphi Disease Specific Program was used to collect physician-reported data on US adult patients with PPMS and SPMS, including active and nonactive disease. Treatment patterns (including the proportion of patients who were untreated with a disease-modifying therapy [DMT]), disability progression, and unmet need are described from 2016 to 2021. RESULTS: Data were collected for 2067 patients with progressive MS (PPMS, 1583; SPMS, 484). A substantial proportion of patients were untreated across all groups, and this was highest for nonactive PPMS (~ 43%). The proportion of untreated patients generally declined over time but remained high in 2018-2021 (~ 10-38%). Among treated patients, the proportion receiving infusions increased over time to ~ 34-46%, largely driven by ocrelizumab use after approval. Disability progression was reported for most patients (> 50%), including many who were receiving a DMT. Across all disease subtypes, when physicians were asked about the greatest unmet need with current DMTs, they most frequently cited effectiveness (~ 63-87%), and specifically slowing disease progression (~ 32-59%). CONCLUSIONS: This analysis of physician-reported data reveals that patients with progressive MS, particularly those with nonactive disease, frequently remain untreated or continue to decline despite treatment with available DMTs. Thus there is an enduring need for safe and effective treatments for this underserved population.

12.
Am J Pathol ; 178(3): 1287-97, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21356379

RESUMO

The activin receptor type IIB (ActRIIB) is a transmembrane receptor for transforming growth factor-ß superfamily members, including myostatin, that are involved in the negative regulation of skeletal muscle mass. We tested the translational hypothesis that blocking ligand binding to ActRIIB for 12 weeks would stimulate skeletal muscle growth and improve muscle function in the mdx mouse. ActRIIB was targeted using a novel inhibitor comprised of the extracellular portion of the ActRIIB fused to the Fc portion of murine IgG (sActRIIB), at concentrations of 1.0 and 10.0 mg/kg(-1) body weight. After 12 weeks of treatment, the 10.0 mg/kg(-1) dose caused a 27% increase in body weight with a concomitant 33% increase in lean muscle mass. Absolute force production of the extensor digitorum longus muscle ex vivo was higher in mice after treatment with either dose of sActRIIB, and the specific force was significantly higher after the lower dose (1.0 mg/kg(-1)), indicating functional improvement in the muscle. Circulating creatine kinase levels were significantly lower in mice treated with sActRIIB, compared with control mice. These data show that targeting the ActRIIB improves skeletal muscle mass and functional strength in the mdx mouse model of DMD, providing a therapeutic rationale for use of this molecule in treating skeletal myopathies.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Receptores de Activinas Tipo II/metabolismo , Animais , Fenômenos Biomecânicos , Peso Corporal , Creatina Quinase/sangue , Hidroxiprolina/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular/fisiologia , Distrofia Muscular Animal/sangue , Distrofia Muscular Animal/patologia , Tamanho do Órgão
13.
Nature ; 443(7114): 993-7, 2006 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17051153

RESUMO

Corneal avascularity-the absence of blood vessels in the cornea-is required for optical clarity and optimal vision, and has led to the cornea being widely used for validating pro- and anti-angiogenic therapeutic strategies for many disorders. But the molecular underpinnings of the avascular phenotype have until now remained obscure and are all the more remarkable given the presence in the cornea of vascular endothelial growth factor (VEGF)-A, a potent stimulator of angiogenesis, and the proximity of the cornea to vascularized tissues. Here we show that the cornea expresses soluble VEGF receptor-1 (sVEGFR-1; also known as sflt-1) and that suppression of this endogenous VEGF-A trap by neutralizing antibodies, RNA interference or Cre-lox-mediated gene disruption abolishes corneal avascularity in mice. The spontaneously vascularized corneas of corn1 and Pax6+/- mice and Pax6+/- patients with aniridia are deficient in sflt-1, and recombinant sflt-1 administration restores corneal avascularity in corn1 and Pax6+/- mice. Manatees, the only known creatures uniformly to have vascularized corneas, do not express sflt-1, whereas the avascular corneas of dugongs, also members of the order Sirenia, elephants, the closest extant terrestrial phylogenetic relatives of manatees, and other marine mammals (dolphins and whales) contain sflt-1, indicating that it has a crucial, evolutionarily conserved role. The recognition that sflt-1 is essential for preserving the avascular ambit of the cornea can rationally guide its use as a platform for angiogenic modulators, supports its use in treating neovascular diseases, and might provide insight into the immunological privilege of the cornea.


Assuntos
Córnea/irrigação sanguínea , Córnea/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Deleção de Genes , Camundongos , Neovascularização Fisiológica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade , Trichechus , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/deficiência , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
14.
Am J Physiol Regul Integr Comp Physiol ; 298(1): R96-R103, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19864340

RESUMO

Hypoxia, or reduced oxygen, occurs in a variety of clinical and environmental situations. Hypoxic exposure is associated with decreased muscle mass and a concomitant reduction in exercise capacity, although the exact mechanisms are not completely understood. The activin type IIB receptor (ActRIIB) is a receptor for transforming growth factor-beta (TGFbeta) superfamily members that are involved in the negative regulation of lean tissue mass. Given that hypoxia has negative effects on muscle mass and function and that modulation of the ActRIIB has been shown to increase muscle mass, we tested the hypothesis that pharmacological targeting of the ActRIIB for 2 wk would attenuate the loss of muscle mass and function in mice after exposure to normobaric hypoxia. ActRIIB modulation was achieved using a soluble activin receptor/Fc fusion protein (sActRIIB) in mice housed in a hypoxic chamber for 1 or 2 wk. Hypoxia induced a reduction in body weight in PBS- and sActRIIB-treated mice, although sActRIIB-treated mice remained larger throughout the hypoxic exposure. The absolute forces generated by extensor digitorum longus muscles were also significantly greater in sActRIIB- than PBS-treated mice and were more resistant to eccentric contraction-induced force drop after eccentric lengthening contractions. In summary, sActRIIB pretreatment attenuated hypoxia-induced muscle dysfunction. These data suggest that targeting the ActRIIB is an effective strategy to counter hypoxia-induced muscle dysfunction and to preacclimatize to hypoxia in clinical or high-altitude settings.


Assuntos
Receptores de Activinas Tipo II/farmacologia , Hipóxia/fisiopatologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/patologia , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Fatores de Tempo
15.
Sci Rep ; 10(1): 4039, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111917

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Sci Rep ; 10(1): 2132, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034254

RESUMO

Upregulation of endogenous utrophin offers great promise for treating DMD, as it can functionally compensate for the lack of dystrophin caused by DMD gene mutations, without the immunogenic concerns associated with delivering dystrophin. However, post-transcriptional repression mechanisms targeting the 5' and 3' untranslated regions (UTRs) of utrophin mRNA significantly limit the magnitude of utrophin upregulation achievable by promoter activation. Using a utrophin 5'3'UTR reporter assay, we performed a high-throughput screen (HTS) for small molecules capable of relieving utrophin post-transcriptional repression. We identified 27 hits that were ranked using a using an algorithm that we designed for hit prioritization that we call Hit to Lead Prioritization Score (H2LPS). The top 10 hits were validated using an orthogonal assay for endogenous utrophin expression. Evaluation of the top scoring hit, Trichostatin A (TSA), demonstrated utrophin upregulation and functional improvement in the mdx mouse model of DMD. TSA and the other small molecules identified here represent potential starting points for DMD drug discovery efforts.

17.
Physiol Genomics ; 37(1): 35-42, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19116248

RESUMO

The extraocular muscles (EOMs) are a distinct muscle group that displays an array of unique contractile, structural, and regenerative properties. They also have differential sensitivity to certain diseases and are enigmatically spared in Duchenne muscular dystrophy (DMD). The EOMs are so distinct from other skeletal muscles that the term "allotype" has been coined to highlight EOM group-specific properties. We hypothesized that increased and distinct stem cells may underlie the continual myogenesis noted in EOM. The side population (SP) stem cells were isolated and studied. EOMs had 15x higher SP cell content compared with limb muscles. Expression profiling revealed 348 transcripts that define the EOM-SP transcriptome. Over 92% of transcripts were SP specific, because they were absent in previous whole muscle microarray studies. Cultured EOM-SP cells revealed superior in vitro proliferative capacity. Finally, assays of the committed progenitors or satellite cells performed on myofibers isolated from EOM and limb muscles independently validated the increased proliferative capacity of these muscles. We suggest a model in which unique EOM stem cells contribute to the continual myogenesis noted in EOM and consistent with a role for their sparing in DMD. We believe the greater numbers of stem cells, their unique transcriptome, the greater proliferative capacity of EOM stem cells, and the greater number of satellite cells also offer clues for novel cell-based therapeutic strategies.


Assuntos
Extremidades , Olho/citologia , Olho/metabolismo , Músculos/citologia , Músculos/metabolismo , Células-Tronco/metabolismo , Transcrição Gênica , Animais , Contagem de Células , Fracionamento Celular , Proliferação de Células , Separação Celular , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Desenvolvimento Muscular , Distrofia Muscular de Duchenne/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Células-Tronco/citologia
18.
Invest Ophthalmol Vis Sci ; 48(3): 1119-27, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17325154

RESUMO

PURPOSE: To examine and characterize the expression of M-bands (or M-lines) in the orbital layer (OL) and global layer (GL) of adult rat extraocular muscles (EOMs). METHODS: Semiquantitative polymerase chain reaction (PCR), quantitative (q)PCR, immunohistochemistry, and confocal microscopy were used to analyze expression of the major gene and protein constituents of M-bands in freshly dissected and cryosectioned rectus extraocular muscles (EOMs) and tibialis anterior (TA) muscles. Electron microscopy (EM) was performed on perfusion-fixed EOMs and TA muscles in a layer-specific manner, to determine, characterize, and quantify laminar-specific differences in M-band expression. RESULTS: These studies demonstrate EOM layer-specific differences in the expression of M-bands and their major constituents, myomesin1 (Myom1) and myomesin2 (Myom2 or M-protein) at the structural, mRNA, and protein levels by using EM, semiquantitative PCR, qPCR, immunohistochemistry, and confocal microscopy. Differences in thick filament lattice order were quantified by using EM-based inter-thick-filament distance and variance measurements and were found to be TA > GL > OL. CONCLUSIONS: The expression pattern of M-bands and their constituents in EOMs provides mechanistic insight for their allotypic and layer-specific viscoelastic properties. Modeling the differential expression of M-bands between EOMs and TA predicts increased elasticity but reduced force and eccentric contraction (ECC)-mediated damage in EOMs and suggests a potential mechanism for the clinical sparing of EOMs noted in Duchenne's muscular dystrophy (DMD).


Assuntos
Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Musculares/genética , Músculos Oculomotores/ultraestrutura , Sarcômeros/ultraestrutura , Animais , Conectina , Imuno-Histoquímica , Microscopia Confocal , Microscopia Eletrônica , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculos Oculomotores/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sarcômeros/metabolismo
19.
FASEB J ; 19(6): 543-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15791004

RESUMO

Mutations in myostatin (GDF8) cause marked increases in muscle mass, suggesting that this transforming growth factor-beta (TGF-beta) superfamily member negatively regulates muscle growth. Myostatin blockade therefore offers a strategy for reversing muscle wasting in Duchenne's muscular dystrophy (DMD) without resorting to genetic manipulation. Here, we demonstrate that pharmacological blockade using a myostatin propeptide stabilized by fusion to IgG-Fc improved pathophysiology of the mdx mouse model of DMD. Functional benefits evidenced by specific force improvement, exceeded those reported previously using myostatin antibody-mediated blockade. More importantly, use of a propeptide blockade strategy obviates possibilities of anti-idiotypic responses that could potentially limit the effectiveness of antibody-mediated myostatin blockade strategies over time. This study provides a novel pharmacological strategy for treatment of diseases associated with muscle wasting such as DMD and since it uses an endogenous inhibitor of myostatin should help circumvent technical hurdles and toxicity associated with conventional gene or cell based therapies.


Assuntos
Distrofia Muscular Animal/terapia , Precursores de Proteínas/administração & dosagem , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Anticorpos Monoclonais , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/química , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/fisiopatologia , Miostatina , Precursores de Proteínas/química , Precursores de Proteínas/imunologia , RNA Mensageiro/análise , Proteínas Recombinantes de Fusão , Fator de Crescimento Transformador beta/imunologia , Utrofina/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-26925256

RESUMO

Human intravenous immune globulin (IVIg), a purified IgG fraction composed of ~ 60% IgG1 and obtained from the pooled plasma of thousands of donors, is clinically used for a wide range of diseases. The biological actions of IVIg are incompletely understood and have been attributed both to the polyclonal antibodies therein and also to their IgG (IgG) Fc regions. Recently, we demonstrated that multiple therapeutic human IgG1 antibodies suppress angiogenesis in a target-independent manner via FcγRI, a high-affinity receptor for IgG1. Here we show that IVIg possesses similar anti-angiogenic activity and inhibited blood vessel growth in five different mouse models of prevalent human diseases, namely, neovascular age-related macular degeneration, corneal neovascularization, colorectal cancer, fibrosarcoma and peripheral arterial ischemic disease. Angioinhibition was mediated by the Fc region of IVIg, required FcγRI and had similar potency in transgenic mice expressing human FcγRs. Finally, IVIg therapy administered to humans for the treatment of inflammatory or autoimmune diseases reduced kidney and muscle blood vessel densities. These data place IVIg, an agent approved by the US Food and Drug Administration, as a novel angioinhibitory drug in doses that are currently administered in the clinical setting. In addition, they raise the possibility of an unintended effect of IVIg on blood vessels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA