Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(6): e26686, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647048

RESUMO

Deuterium metabolic imaging (DMI) is an emerging magnetic resonance technique, for non-invasive mapping of human brain glucose metabolism following oral or intravenous administration of deuterium-labeled glucose. Regional differences in glucose metabolism can be observed in various brain pathologies, such as Alzheimer's disease, cancer, epilepsy or schizophrenia, but the achievable spatial resolution of conventional phase-encoded DMI methods is limited due to prolonged acquisition times rendering submilliliter isotropic spatial resolution for dynamic whole brain DMI not feasible. The purpose of this study was to implement non-Cartesian spatial-spectral sampling schemes for whole-brain 2H FID-MR Spectroscopic Imaging to assess time-resolved metabolic maps with sufficient spatial resolution to reliably detect metabolic differences between healthy gray and white matter regions. Results were compared with lower-resolution DMI maps, conventionally acquired within the same session. Six healthy volunteers (4 m/2 f) were scanned for ~90 min after administration of 0.8 g/kg oral [6,6']-2H glucose. Time-resolved whole brain 2H FID-DMI maps of glucose (Glc) and glutamate + glutamine (Glx) were acquired with 0.75 and 2 mL isotropic spatial resolution using density-weighted concentric ring trajectory (CRT) and conventional phase encoding (PE) readout, respectively, at 7 T. To minimize the effect of decreased signal-to-noise ratios associated with smaller voxels, low-rank denoising of the spatiotemporal data was performed during reconstruction. Sixty-three minutes after oral tracer uptake three-dimensional (3D) CRT-DMI maps featured 19% higher (p = .006) deuterium-labeled Glc concentrations in GM (1.98 ± 0.43 mM) compared with WM (1.66 ± 0.36 mM) dominated regions, across all volunteers. Similarly, 48% higher (p = .01) 2H-Glx concentrations were observed in GM (2.21 ± 0.44 mM) compared with WM (1.49 ± 0.20 mM). Low-resolution PE-DMI maps acquired 70 min after tracer uptake featured smaller regional differences between GM- and WM-dominated areas for 2H-Glc concentrations with 2.00 ± 0.35 mM and 1.71 ± 0.31 mM, respectively (+16%; p = .045), while no regional differences were observed for 2H-Glx concentrations. In this study, we successfully implemented 3D FID-MRSI with fast CRT encoding for dynamic whole-brain DMI at 7 T with 2.5-fold increased spatial resolution compared with conventional whole-brain phase encoded (PE) DMI to visualize regional metabolic differences. The faster metabolic activity represented by 48% higher Glx concentrations was observed in GM- compared with WM-dominated regions, which could not be reproduced using whole-brain DMI with the low spatial resolution protocol. Improved assessment of regional pathologic alterations using a fully non-invasive imaging method is of high clinical relevance and could push DMI one step toward clinical applications.


Assuntos
Encéfalo , Deutério , Glucose , Humanos , Glucose/metabolismo , Adulto , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Espectroscopia de Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo
2.
Magn Reson Med ; 91(5): 2044-2056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193276

RESUMO

PURPOSE: Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0 ), which is a prerequisite for high quality data. Thus, characterization of changes to B0 , for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. METHODS: We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real-time correction. A 3D U-net was trained on in vivo gradient-echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid-body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine-trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U-net with these data. RESULTS: Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator-equivalent method and proposed method. CONCLUSION: It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Movimento (Física) , Movimento , Processamento de Imagem Assistida por Computador/métodos , Artefatos
3.
Neuroimage ; 277: 120250, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37414233

RESUMO

INTRODUCTION: Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'-2H2]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using 2H MRSI (DMI) and 1H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.e., estimated concentration enrichment of deuterium labeled Glx (glutamate+glutamine) and Glc (glucose) acquired repeatedly in the same cohort of subjects using DMI at 7T and QELT at clinical 3T. METHODS: Five volunteers (4 m/1f) were scanned in repeated sessions for 60 min after overnight fasting and 0.8 g/kg oral [6,6'-2H2]-glucose administration using time-resolved 3D 2H FID-MRSI with elliptical phase encoding at 7T and 3D 1H FID-MRSI with a non-Cartesian concentric ring trajectory readout at clinical 3T. RESULTS: One hour after oral tracer administration regionally averaged deuterium labeled Glx4 concentrations and the dynamics were not significantly different over all participants between 7T 2H DMI and 3T 1H QELT data for GM (1.29±0.15 vs. 1.38±0.26 mM, p=0.65 & 21±3 vs. 26±3 µM/min, p=0.22) and WM (1.10±0.13 vs. 0.91±0.24 mM, p=0.34 & 19±2 vs. 17±3 µM/min, p=0.48). Also, the observed time constants of dynamic Glc6 data in GM (24±14 vs. 19±7 min, p=0.65) and WM (28±19 vs. 18±9 min, p=0.43) dominated regions showed no significant differences. Between individual 2H and 1H data points a weak to moderate negative correlation was observed for Glx4 concentrations in GM (r=-0.52, p<0.001), and WM (r=-0.3, p<0.001) dominated regions, while a strong negative correlation was observed for Glc6 data GM (r=-0.61, p<0.001) and WM (r=-0.70, p<0.001). CONCLUSION: This study demonstrates that indirect detection of deuterium labeled compounds using 1H QELT MRSI at widely available clinical 3T without additional hardware is able to reproduce absolute concentration estimates of downstream glucose metabolites and the dynamics of glucose uptake compared to 2H DMI data acquired at 7T. This suggests significant potential for widespread application in clinical settings especially in environments with limited access to ultra-high field scanners and dedicated RF hardware.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Deutério/metabolismo , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glucose/metabolismo
4.
NMR Biomed ; 36(1): e4813, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995750

RESUMO

A three-dimensional (3D), density-weighted, concentric rings trajectory (CRT) magnetic resonance spectroscopic imaging (MRSI) sequence is implemented for cardiac phosphorus (31 P)-MRS at 7 T. The point-by-point k-space sampling of traditional phase-encoded chemical shift imaging (CSI) sequences severely restricts the minimum scan time at higher spatial resolutions. Our proposed CRT sequence implements a stack of concentric rings, with a variable number of rings and planes spaced to optimise the density of k-space weighting. This creates flexibility in acquisition time, allowing acquisitions substantially faster than traditional phase-encoded CSI sequences, while retaining high signal-to-noise ratio (SNR). We first characterise the SNR and point-spread function of the CRT sequence in phantoms. We then evaluate it at five different acquisition times and spatial resolutions in the hearts of five healthy participants at 7 T. These different sequence durations are compared with existing published 3D acquisition-weighted CSI sequences with matched acquisition times and spatial resolutions. To minimise the effect of noise on the short acquisitions, low-rank denoising of the spatiotemporal data was also performed after acquisition. The proposed sequence measures 3D localised phosphocreatine to adenosine triphosphate (PCr/ATP) ratios of the human myocardium in 2.5 min, 2.6 times faster than the minimum scan time for acquisition-weighted phase-encoded CSI. Alternatively, in the same scan time, a 1.7-times smaller nominal voxel volume can be achieved. Low-rank denoising reduced the variance of measured PCr/ATP ratios by 11% across all protocols. The faster acquisitions permitted by 7-T CRT 31 P-MRSI could make cardiac stress protocols or creatine kinase rate measurements (which involve repeated scans) more tolerable for patients without sacrificing spatial resolution.


Assuntos
Imageamento por Ressonância Magnética , Fósforo , Humanos , Espectroscopia de Ressonância Magnética
5.
Radiology ; 303(1): 141-150, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981978

RESUMO

Background MR spectroscopic imaging (MRSI) allows in vivo assessment of brain metabolism and is of special interest in multiple sclerosis (MS), where morphologic MRI cannot depict major parts of disease activity. Purpose To evaluate the ability of 7.0-T MRSI to depict and visualize pathologic alterations in the normal-appearing white matter (NAWM) and cortical gray matter (CGM) in participants with MS and to investigate their relation to disability. Materials and Methods Free-induction decay MRSI was performed at 7.0 T. Participants with MS and age- and sex-matched healthy controls were recruited prospectively between January 2016 and December 2017. Metabolic ratios were obtained in white matter lesions, NAWM, and CGM regions. Subgroup analysis for MS-related disability based on Expanded Disability Status Scale (EDSS) scores was performed using analysis of covariance. Partial correlations were applied to explore associations between metabolic ratios and disability. Results Sixty-five participants with MS (mean age ± standard deviation, 34 years ± 9; 34 women) and 20 age- and sex-matched healthy controls (mean age, 32 years ± 7; 11 women) were evaluated. Higher signal intensity of myo-inositol (mI) with and without reduced signal intensity of N-acetylaspartate (NAA) was visible on metabolic images in the NAWM of participants with MS. A higher ratio of mI to total creatine (tCr) was observed in the NAWM of the centrum semiovale of all MS subgroups, including participants without disability (marginal mean ± standard error, healthy controls: 0.78 ± 0.04; EDSS 0-1: 0.86 ± 0.03 [P = .02]; EDSS 1.5-3: 0.95 ± 0.04 [P < .001]; EDSS ≥3.5: 0.94 ± 0.04 [P = .001]). A lower ratio of NAA to tCr was found in MS subgroups with disabilities, both in their NAWM (marginal mean ± standard error, healthy controls: 1.46 ± 0.04; EDSS 1.5-3: 1.33 ± 0.03 [P = .03]; EDSS ≥3.5: 1.30 ± 0.04 [P = .01]) and CGM (marginal mean ± standard error, healthy controls: 1.42 ± 0.05; EDSS ≥3.5: 1.23 ± 0.05 [P = .006]). mI/NAA correlated with EDSS (NAWM of centrum semiovale: r = 0.47, P < .001; parietal NAWM: r = 0.43, P = .002; frontal NAWM: r = 0.34, P = .01; frontal CGM: r = 0.37, P = .004). Conclusion MR spectroscopic imaging at 7.0 T allowed in vivo visualization of multiple sclerosis pathologic findings not visible at T1- or T2-weighted MRI. Metabolic abnormalities in the normal-appearing white matter and cortical gray matter were associated with disability. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Barker in this issue.


Assuntos
Pessoas com Deficiência , Esclerose Múltipla , Substância Branca , Adulto , Encéfalo/patologia , Creatina/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Esclerose Múltipla/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Substância Branca/patologia
6.
Magn Reson Med ; 87(3): 1174-1183, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719061

RESUMO

PURPOSE: Lactate is a key metabolite in skeletal muscle and whole-body physiology. Its MR visibility in muscle is affected by overlapping lipid signals and fiber orientation. Double-quantum filtered (DQF) 1 H MRS selectively detects lactate at 1.3 ppm, but at ultra-high field the efficiency of slice-selective 3D-localization with conventional RF pulses is limited by bandwidth. This novel 3D-localized 1 H DQF MRS sequence uses adiabatic refocusing pulses to unambiguously detect lactate in skeletal muscle at 7 T. METHODS: Lactate double-quantum coherences were 3D-localized using slice-selective Shinnar-Le Roux optimized excitation and adiabatic refocusing pulses (similar to semi-LASER). DQF MR spectra were acquired at 7 T from lactate phantoms, meat specimens with injected lactate (exploring multiple TEs and fiber orientations), and human gastrocnemius in vivo during and after exercise (without cuff ischemia). RESULTS: Lactate was readily detected, achieving the full potential of 50% signal with a DQF, in solution. The effects of fiber orientation and TE on the lactate doublet (peak splitting, amplitude, and phase) were in good agreement with theory and literature. Exercise-induced lactate accumulation was detected with 30 s time resolution. CONCLUSION: This novel 3D-localized 1 H DQF MRS sequence can dynamically detect glycolytically generated lactate in muscle during exercise and recovery at 7 T.


Assuntos
Ácido Láctico , Músculo Esquelético , Exercício Físico , Humanos , Espectroscopia de Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas
7.
NMR Biomed ; 35(1): e4621, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34609036

RESUMO

MR spectroscopic imaging (MRSI) noninvasively maps the metabolism of human brains. In particular, the imaging of D-2-hydroxyglutarate (2HG) produced by glioma isocitrate dehydrogenase (IDH) mutations has become a key application in neuro-oncology. However, the performance of full field-of-view MRSI is limited by B0 spatial nonuniformity and lipid artifacts from tissues surrounding the brain. Array coils that multiplex RF-receive and B0 -shim electrical currents (AC/DC mixing) over the same conductive loops provide many degrees of freedom to improve B0 uniformity and reduce lipid artifacts. AC/DC coils are highly efficient due to compact design, requiring low shim currents (<2 A) that can be switched fast (0.5 ms) with high interscan reproducibility (10% coefficient of variation for repeat measurements). We measured four tumor patients and five volunteers at 3 T and show that using AC/DC coils in addition to the vendor-provided second-order spherical harmonics shim provides 19% narrower spectral linewidth, 6% higher SNR, and 23% less lipid content for unrestricted field-of-view MRSI, compared with the vendor-provided shim alone. We demonstrate that improvement in MRSI data quality led to 2HG maps with higher contrast-to-noise ratio for tumors that coincide better with the FLAIR-enhancing lesions in mutant IDH glioma patients. Smaller Cramér-Rao lower bounds for 2HG quantification are obtained in tumors by AC/DC shim, corroborating with simulations that predicted improved accuracy and precision for narrower linewidths. AC/DC coils can be used synergistically with optimized acquisition schemes to improve metabolic imaging for precision oncology of glioma patients. Furthermore, this methodology has broad applicability to other neurological disorders and neuroscience.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glutaratos/análise , Isocitrato Desidrogenase/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Mutação
8.
Anal Biochem ; 638: 114479, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838516

RESUMO

Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.


Assuntos
Encéfalo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética
9.
Gerontology ; 68(2): 151-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33971654

RESUMO

BACKGROUND/AIMS: Walking speed (WS) is an objective measure of physical capacity and a modifiable risk factor of morbidity and mortality in the elderly. In this study, we (i) determined effects of 3-month supervised aerobic-strength training on WS, muscle strength, and habitual physical activity; (ii) evaluated capacity of long-term (21 months) training to sustain higher WS; and (iii) identified determinants of WS in the elderly. METHODS: Volunteers (F 48/M 14, 68.4 ± 7.1 years) completed either 3-month aerobic-strength (3 × 1 h/week, n = 48) or stretching (active control, n = 14) intervention (study A). Thirty-one individuals (F 24/M 7) from study A continued in supervised aerobic-strength training (2 × 1 h/week, 21 months) and 6 (F 5/M 1) became nonexercising controls. RESULTS: Three-month aerobic-strength training increased preferred and maximal WS (10-m walk test, p < 0.01), muscle strength (p < 0.01) and torque (p < 0.01) at knee extension, and 24-h habitual physical activity (p < 0.001), while stretching increased only preferred WS (p < 0.03). Effect of training on maximal WS was most prominent in individuals with baseline WS between 1.85 and 2.30 m·s-1. Maximal WS measured before intervention correlated negatively with age (r = -0.339, p = 0.007), but this correlation was weakened by the intervention (r = -0.238, p = 0.06). WS progressively increased within the first 9 months of aerobic-strength training (p < 0.001) and remained elevated during 21-month intervention (p < 0.01). Cerebellar gray matter volume (MRI) was positively associated with maximal (r = 0.54; p < 0.0001) but not preferred WS and explained >26% of its variability, while age had only minor effect. CONCLUSIONS: Supervised aerobic-strength training increased WS, strength, and dynamics of voluntary knee extension as well as habitual physical activity in older individuals. Favorable changes in WS were sustainable over the 21-month period by a lower dose of aerobic-strength training. Training effects on WS were not limited by age, and cerebellar cortex volume was the key determinant of WS.


Assuntos
Treinamento Resistido , Idoso , Exercício Físico/fisiologia , Humanos , Força Muscular , Torque , Caminhada/fisiologia , Velocidade de Caminhada
10.
Neuroimage ; 241: 118430, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314848

RESUMO

PURPOSE: Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. METHOD: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). RESULTS: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. DISCUSSION: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Análise de Dados , Bases de Dados Factuais/normas , Imageamento por Ressonância Magnética/normas , Espectroscopia de Ressonância Magnética/normas , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos
11.
Magn Reson Med ; 85(6): 3010-3026, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33427322

RESUMO

PURPOSE: In this study, different single-voxel localization sequences were implemented and systematically compared for the first time for phosphorous MRS (31 P-MRS) in the human brain at 9.4 T. METHODS: Two multishot sequences, image-selected in vivo spectroscopy (ISIS) and a conventional slice-selective excitation combined with localization by adiabatic selective refocusing (semiLASER) variant of the spin-echo full intensity-acquired localized spectroscopy (SPECIAL-semiLASER), and two single-shot sequences, semiLASER and stimulated echo acquisition mode (STEAM), were implemented and optimized for 31 P-MRS in the human brain at 9.4 T. Pulses and coil setup were optimized, localization accuracy was tested in phantom experiments, and absolute SNR of the sequences was compared in vivo. The SNR per unit time (SNR/t) was derived and compared for all four sequences and verified experimentally for ISIS in two different voxel sizes (3 × 3 × 3 cm3 , 5 × 5 × 5 cm3 , 10-minute measurement time). Metabolite signals obtained with ISIS were quantified. The possible spectral quality in vivo acquired in clinically feasible time (3:30 minutes, 3 × 3 × 3 cm3 ) was explored for two different coil setups. RESULTS: All evaluated sequences performed with good localization accuracy in phantom experiments and provided well-resolved spectra in vivo. However, ISIS has the lowest chemical shift displacement error, the best localization accuracy, the highest SNR/t for most metabolites, provides metabolite concentrations comparable to literature values, and is the only one of the sequences that allows for the detection of the whole 31 P spectrum, including ß-adenosine triphosphate, with the used setup. The SNR/t of STEAM is comparable to the SNR/t of ISIS. The semiLASER and SPECIAL-semiLASER sequences provide good results for metabolites with long T2 . CONCLUSION: At 9.4 T, high-quality single-voxel localized 31 P-MRS can be performed in the human brain with different localization methods, each with inherent characteristics suitable for different research issues.


Assuntos
Encéfalo , Regiões de Interação com a Matriz , Encéfalo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Fósforo
12.
Magn Reson Med ; 85(4): 1909-1923, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33165952

RESUMO

PURPOSE: To explore the impact of temporal motion-induced coil sensitivity changes on CEST-MRI at 7T and its correction using interleaved volumetric EPI navigators, which are applied for real-time motion correction. METHODS: Five healthy volunteers were scanned via CEST. A 4-fold correction pipeline allowed the mitigation of (1) motion, (2) motion-induced coil sensitivity variations, ΔB1- , (3) motion-induced static magnetic field inhomogeneities, ΔB0 , and (4) spatially varying transmit RF field fluctuations, ΔB1+ . Four CEST measurements were performed per session. For the first 2, motion correction was turned OFF and then ON in absence of voluntary motion, whereas in the other 2 controlled head rotations were performed. During post-processing ΔB1- was removed additionally for the motion-corrected cases, resulting in a total of 6 scenarios to be compared. In all cases, retrospective ∆B0 and - ΔB1+ corrections were performed to compute artifact-free magnetization transfer ratio maps with asymmetric analysis (MTRasym ). RESULTS: Dynamic ΔB1- correction successfully mitigated signal deviations caused by head motion. In 2 frontal lobe regions of volunteer 4, induced relative signal errors of 10.9% and 3.9% were reduced to 1.1% and 1.0% after correction. In the right frontal lobe, the motion-corrected MTRasym contrast deviated 0.92%, 1.21%, and 2.97% relative to the static case for Δω = 1, 2, 3 ± 0.25 ppm. The additional application of ΔB1- correction reduced these deviations to 0.10%, 0.14%, and 0.42%. The fully corrected MTRasym values were highly consistent between measurements with and without intended head rotations. CONCLUSION: Temporal ΔB1- cause significant CEST quantification bias. The presented correction pipeline including the proposed retrospective ΔB1- correction significantly reduced motion-related artifacts on CEST-MRI.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Estudos Retrospectivos
13.
Magn Reson Med ; 86(5): 2353-2367, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34061405

RESUMO

PURPOSE: State-of-the-art whole-brain MRSI with spatial-spectral encoding and multichannel acquisition generates huge amounts of data, which must be efficiently processed to stay within reasonable reconstruction times. Although coil combination significantly reduces the amount of data, currently it is performed in image space at the end of the reconstruction. This prolongs reconstruction times and increases RAM requirements. We propose an alternative k-space-based coil combination that uses geometric deep learning to combine MRSI data already in native non-Cartesian k-space. METHODS: Twelve volunteers were scanned at a 3T MR scanner with a 20-channel head coil at 10 different positions with water-unsuppressed MRSI. At the eleventh position, water-suppressed MRSI data were acquired. Data of 7 volunteers were used to estimate sensitivity maps and form a base for simulating training data. A neural network was designed and trained to remove the effect of sensitivity profiles of the coil elements from the MRSI data. The water-suppressed MRSI data of the remaining volunteers were used to evaluate the performance of the new k-space-based coil combination relative to that of a conventional image-based alternative. RESULTS: For both approaches, the resulting metabolic ratio maps were similar. The SNR of the k-space-based approach was comparable to the conventional approach in low SNR regions, but underperformed for high SNR. The Cramér-Rao lower bounds show the same trend. The analysis of the FWHM showed no difference between the two methods. CONCLUSION: k-Space-based coil combination of MRSI data is feasible and reduces the amount of raw data immediately after their sampling.


Assuntos
Aprendizado Profundo , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Razão Sinal-Ruído
14.
Magn Reson Med ; 85(3): 1379-1396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32981114

RESUMO

PURPOSE: To develop a fat-water imaging method that allows reliable separation of the two tissues, uses established robust reconstruction methods, and requires only one single-echo acquisition. THEORY AND METHODS: The proposed method uses spectrally selective dual-band excitation in combination with CAIPIRINHA to generate separate images of fat and water simultaneously. Spatially selective excitation without cross-contamination is made possible by the use of spatial-spectral pulses. Fat and water images can either be visualized separately, or the fat images can be corrected for chemical shift displacement and, in gradient echo imaging, for chemical shift-related phase discrepancy, and recombined with water images, generating fat-water images free of chemical shift effects. Gradient echo and turbo spin echo sequences were developed based on this Simultaneous Multiple Resonance Frequency imaging (SMURF) approach and their performance was assessed at 3Tesla in imaging of the knee, breasts, and abdomen. RESULTS: The proposed method generated well-separated fat and water images with minimal unaliasing artefacts or cross-excitation, evidenced by the near absence of water signal attributed to the fat image and vice versa. The separation achieved was similar to or better than that using separate acquisitions with water- and fat-saturation or Dixon methods. The recombined fat-water images provided similar image contrast to conventional images, but the chemical shift effects were eliminated. CONCLUSION: Simultaneous Multiple Resonance Frequency imaging is a robust fat-water imaging technique that offers a solution to imaging of body regions with significant amounts of fat.


Assuntos
Diagnóstico por Imagem , Água , Tecido Adiposo/diagnóstico por imagem , Artefatos , Testes Diagnósticos de Rotina , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Vibração
15.
NMR Biomed ; 34(5): e4314, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32399974

RESUMO

Over more than 30 years in vivo MR spectroscopic imaging (MRSI) has undergone an enormous evolution from theoretical concepts in the early 1980s to the robust imaging technique that it is today. The development of both fast and efficient sampling and reconstruction techniques has played a fundamental role in this process. State-of-the-art MRSI has grown from a slow purely phase-encoded acquisition technique to a method that today combines the benefits of different acceleration techniques. These include shortening of repetition times, spatial-spectral encoding, undersampling of k-space and time domain, and use of spatial-spectral prior knowledge in the reconstruction. In this way in vivo MRSI has considerably advanced in terms of spatial coverage, spatial resolution, acquisition speed, artifact suppression, number of detectable metabolites and quantification precision. Acceleration not only has been the enabling factor in high-resolution whole-brain 1 H-MRSI, but today is also common in non-proton MRSI (31 P, 2 H and 13 C) and applied in many different organs. In this process, MRSI techniques had to constantly adapt, but have also benefitted from the significant increase of magnetic field strength boosting the signal-to-noise ratio along with high gradient fidelity and high-density receive arrays. In combination with recent trends in image reconstruction and much improved computation power, these advances led to a number of novel developments with respect to MRSI acceleration. Today MRSI allows for non-invasive and non-ionizing mapping of the spatial distribution of various metabolites' tissue concentrations in animals or humans, is applied for clinical diagnostics and has been established as an important tool for neuro-scientific and metabolism research. This review highlights the developments of the last five years and puts them into the context of earlier MRSI acceleration techniques. In addition to 1 H-MRSI it also includes other relevant nuclei and is not limited to certain body regions or specific applications.


Assuntos
Imageamento por Ressonância Magnética , Algoritmos , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Imagem Ecoplanar , Humanos , Metaboloma , Ondas de Rádio
16.
NMR Biomed ; 34(5): e4275, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32078755

RESUMO

The purpose of this work is to develop and validate a new atlas-based metabolite quantification pipeline for edited magnetic resonance spectroscopic imaging (MEGA-MRSI) that enables group comparisons of brain structure-specific GABA levels. By using brain structure masks segmented from high-resolution MPRAGE images and coregistering these to MEGA-LASER 3D MRSI data, an automated regional quantification of neurochemical levels is demonstrated for the example of the thalamus. Thalamic gamma-aminobutyric acid + coedited macromolecules (GABA+) levels from 21 healthy subjects scanned at 3 T were cross-validated both against a single-voxel MEGA-PRESS acquisition in the same subjects and same scan sessions, as well as alternative MRSI processing techniques (ROI approach, four-voxel approach) using Pearson correlation analysis. In addition, reproducibility was compared across the MRSI processing techniques in test-retest data from 14 subjects. The atlas-based approach showed a significant correlation with SV MEGA-PRESS (correlation coefficient r [GABA+] = 0.63, P < 0.0001). However, the actual values for GABA+, NAA, tCr, GABA+/tCr and tNAA/tCr obtained from the atlas-based approach showed an offset to SV MEGA-PRESS levels, likely due to the fact that on average the thalamus mask used for the atlas-based approach only occupied 30% of the SVS volume, ie, somewhat different anatomies were sampled. Furthermore, the new atlas-based approach showed highly reproducible GABA+/tCr values with a low median coefficient of variance of 6.3%. In conclusion, the atlas-based metabolite quantification approach enables a more brain structure-specific comparison of GABA+ and other neurochemical levels across populations, even when using an MRSI technique with only cm-level resolution. This approach was successfully cross-validated against the typically used SVS technique as well as other different MRSI analysis methods, indicating the robustness of this quantification approach.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Ácido gama-Aminobutírico/análise , Adulto , Creatinina/metabolismo , Dipeptídeos/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
NMR Biomed ; 34(8): e4538, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33956374

RESUMO

The hippocampus is one of the most challenging brain regions for proton MR spectroscopy (MRS) applications. Moreover, quantification of J-coupled species such as myo-inositol (m-Ins) and glutamate + glutamine (Glx) is affected by the presence of macromolecular background. While long echo time (TE) MRS eliminates the macromolecules, it also decreases the m-Ins and Glx signal and, as a result, these metabolites are studied mainly with short TE. Here, we investigate the feasibility of reproducibly measuring their concentrations at a long TE of 120 ms, using a semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence, as this sequence was recently recommended as a standard for clinical MRS. Gradient offset-independent adiabatic refocusing pulses were implemented, and an optimal long TE for the detection of m-Ins and Glx was determined using the T2 relaxation times of macromolecules. Metabolite concentrations and their coefficients of variation (CVs) were obtained for a 3.4-mL voxel centered on the left hippocampus on 3-T MR systems at two different sites with three healthy subjects (aged 32.5 ± 10.2 years [mean ± standard deviation]) per site, with each subject scanned over two sessions, and with each session comprising three scans. Concentrations of m-Ins, choline, creatine, Glx and N-acetyl-aspartate were 5.4 ± 1.5, 1.7 ± 0.2, 5.8 ± 0.3, 11.6 ± 1.2 and 5.9 ± 0.4 mM (mean ± standard deviation), respectively. Their respective mean within-session CVs were 14.5% ± 5.9%, 6.5% ± 5.3%, 6.0% ± 3.4%, 10.6% ± 6.2% and 3.5% ± 1.4%, and their mean within-subject CVs were 17.8% ± 18.2%, 7.5% ± 6.3%, 7.4% ± 6.4%, 12.4% ± 5.3% and 4.8% ± 3.0%. The between-subject CVs were 25.0%, 12.3%, 5.3%, 10.7% and 6.4%, respectively. Hippocampal long-TE sLASER single voxel spectroscopy can provide macromolecule-independent assessment of all major metabolites including Glx and m-Ins.


Assuntos
Algoritmos , Hipocampo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Metaboloma , Fatores de Tempo
18.
NMR Biomed ; 34(5): e4411, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32946145

RESUMO

Spectral editing in in vivo 1 H-MRS provides an effective means to measure low-concentration metabolite signals that cannot be reliably measured by conventional MRS techniques due to signal overlap, for example, γ-aminobutyric acid, glutathione and D-2-hydroxyglutarate. Spectral editing strategies utilize known J-coupling relationships within the metabolite of interest to discriminate their resonances from overlying signals. This consensus recommendation paper provides a brief overview of commonly used homonuclear editing techniques and considerations for data acquisition, processing and quantification. Also, we have listed the experts' recommendations for minimum requirements to achieve adequate spectral editing and reliable quantification. These include selecting the right editing sequence, dealing with frequency drift, handling unwanted coedited resonances, spectral fitting of edited spectra, setting up multicenter clinical trials and recommending sequence parameters to be reported in publications.


Assuntos
Consenso , Espectroscopia de Prótons por Ressonância Magnética , Calibragem , Prova Pericial , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Metaboloma , Córtex Motor/metabolismo , Mutação/genética , Lobo Occipital/metabolismo
19.
NMR Biomed ; 34(5): e4309, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32350978

RESUMO

Magnetic resonance spectroscopic imaging (MRSI) offers considerable promise for monitoring metabolic alterations associated with disease or injury; however, to date, these methods have not had a significant impact on clinical care, and their use remains largely confined to the research community and a limited number of clinical sites. The MRSI methods currently implemented on clinical MRI instruments have remained essentially unchanged for two decades, with only incremental improvements in sequence implementation. During this time, a number of technological developments have taken place that have already greatly benefited the quality of MRSI measurements within the research community and which promise to bring advanced MRSI studies to the point where the technique becomes a true imaging modality, while making the traditional review of individual spectra a secondary requirement. Furthermore, the increasing use of biomedical MR spectroscopy studies has indicated clinical areas where advanced MRSI methods can provide valuable information for clinical care. In light of this rapidly changing technological environment and growing understanding of the value of MRSI studies for biomedical studies, this article presents a consensus from a group of experts in the field that reviews the state-of-the-art for clinical proton MRSI studies of the human brain, recommends minimal standards for further development of vendor-provided MRSI implementations, and identifies areas which need further technical development.


Assuntos
Consenso , Espectroscopia de Ressonância Magnética , Neuroimagem , Encéfalo/diagnóstico por imagem , Prova Pericial , Humanos , Metaboloma
20.
NMR Biomed ; 34(5): e4364, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33089547

RESUMO

Long acquisition times due to intrinsically low signal-to-noise ratio and the need for highly homogeneous B0 field make MRS particularly susceptible to motion or scanner instability compared with MRI. Motion-induced changes in both localization and shimming (ie B0 homogeneity) degrade MRS data quality. To mitigate the effects of motion three approaches can be employed: (1) subject immobilization, (2) retrospective correction, and (3) prospective real-time correction using internal and/or external tracking methods. Prospective real-time correction methods can simultaneously update localization and the B0 field to improve MRS data quality. While localization errors can be corrected with both internal (navigators) and external (optical camera, NMR probes) tracking methods, the B0 field correction requires internal navigator methods to measure the B0 field inside the imaged volume and the possibility to update the scanner shim hardware in real time. Internal and external tracking can rapidly update the MRS localization with submillimeter and subdegree precision, while scanner frequency and first-order shims of scanner hardware can be updated by internal methods every sequence repetition. These approaches are most well developed for neuroimaging, for which rigid transformation is primarily applicable. Real-time correction greatly improves the stability of MRS acquisition and quantification, as shown in clinical studies on subjects prone to motion, including children and patients with movement disorders, enabling robust measurement of metabolite signals including those with low concentrations, such as gamma-aminobutyric acid and glutathione. Thus, motion correction is recommended for MRS users and calls for tighter integration and wider availability of such methods by MR scanner manufacturers.


Assuntos
Consenso , Espectroscopia de Ressonância Magnética , Movimento (Física) , Prova Pericial , Humanos , Imageamento por Ressonância Magnética , Metaboloma , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA