Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299947

RESUMO

Approximately 65% of the worldwide adult population has experienced stress, affecting their daily routine at least once in the past year. Stress becomes harmful when it occurs for too long or is continuous (i.e., chronic), interfering with our performance, attention, and concentration. Chronic high stress contributes to major health issues such as heart disease, high blood pressure, diabetes, depression, and anxiety. Several researchers have focused on detecting stress through combining many features with machine/deep learning models. Despite these efforts, our community has not agreed on the number of features to identify stress conditions using wearable devices. In addition, most of the reported studies have been focused on person-specific training and testing. Thanks to our community's broad acceptance of wearable wristband devices, this work investigates a global stress detection model combining eight HRV features with a random forest (RF) algorithm. Whereas the model's performance is evaluated for each individual, the training of the RF model contains instances of all subjects (i.e., global training). We have validated the proposed global stress model using two open-access databases (the WESAD and SWELL databases) and their combination. The eight HRV features with the highest classifying power are selected using the minimum redundancy maximum relevance (mRMR) method, reducing the training time of the global stress platform. The proposed global stress monitoring model identifies person-specific stress events with an accuracy higher than 99% after a global training framework. Future work should be focused on testing this global stress monitoring framework in real-world applications.


Assuntos
Algoritmo Florestas Aleatórias , Dispositivos Eletrônicos Vestíveis , Adulto , Humanos , Frequência Cardíaca/fisiologia , Aprendizado de Máquina
2.
Sensors (Basel) ; 22(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35591223

RESUMO

Glucose monitoring technologies allow users to monitor glycemic fluctuations (e.g., blood glucose levels). This is particularly important for individuals who have diabetes mellitus (DM). Traditional self-monitoring blood glucose (SMBG) devices require the user to prick their finger and extract a blood drop to measure the blood glucose based on chemical reactions with the blood. Unlike traditional glucometer devices, noninvasive continuous glucose monitoring (NICGM) devices aim to solve these issues by consistently monitoring users' blood glucose levels (BGLs) without invasively acquiring a sample. In this work, we investigated the feasibility of a novel approach to NICGM using multiple off-the-shelf wearable sensors and learning-based models (i.e., machine learning) to predict blood glucose. Two datasets were used for this study: (1) the OhioT1DM dataset, provided by the Ohio University; and (2) the UofM dataset, created by our research team. The UofM dataset consists of fourteen features provided by six sensors for studying possible relationships between glucose and noninvasive biometric measurements. Both datasets are passed through a machine learning (ML) pipeline that tests linear and nonlinear models to predict BGLs from the set of noninvasive features. The results of this pilot study show that the combination of fourteen noninvasive biometric measurements with ML algorithms could lead to accurate BGL predictions within the clinical range; however, a larger dataset is required to make conclusions about the feasibility of this approach.


Assuntos
Automonitorização da Glicemia , Dispositivos Eletrônicos Vestíveis , Algoritmos , Glicemia , Automonitorização da Glicemia/métodos , Glucose , Humanos , Aprendizado de Máquina , Projetos Piloto , Punho
3.
PLoS One ; 18(9): e0291103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682849

RESUMO

Quantitative phase imaging (QPI) via Digital Holographic microscopy (DHM) has been widely applied in material and biological applications. The performance of DHM technologies relies heavily on computational reconstruction methods to provide accurate phase measurements. Among the optical configuration of the imaging system in DHM, imaging systems operating in a non-telecentric regime are the most common ones. Nonetheless, the spherical wavefront introduced by the non-telecentric DHM system must be compensated to provide undistorted phase measurements. The proposed reconstruction approach is based on previous work from Kemper's group. Here, we have reformulated the problem, reducing the number of required parameters needed for reconstructing phase images to the sensor pixel size and source wavelength. The developed computational algorithm can be divided into six main steps. In the first step, the selection of the +1-diffraction order in the hologram spectrum. The interference angle is obtained from the selected +1 order. Secondly, the curvature of the spherical wavefront distorting the sample's phase map is estimated by analyzing the size of the selected +1 order in the hologram's spectrum. The third and fourth steps are the spatial filtering of the +1 order and the compensation of the interference angle. The next step involves the estimation of the center of the spherical wavefront. An optional final optimization step has been included to fine-tune the estimated parameters and provide fully compensated phase images. Because the proper implementation of a framework is critical to achieve successful results, we have explicitly described the steps, including functions and toolboxes, required for reconstructing phase images without distortions. As a result, we have provided open-access codes and a user interface tool with minimum user input to reconstruct holograms recorded in a non-telecentric DHM system.


Assuntos
Holografia , Microscopia , Algoritmos , Tecnologia Digital , Registros
4.
J Biomed Opt ; 25(8): 1-11, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32755077

RESUMO

SIGNIFICANCE: The hallmarks of digital holographic microscopy (DHM) compared with other quantitative phase imaging (QPI) methods are high speed, accuracy, spatial resolution, temporal stability, and polarization-sensitivity (PS) capability. The above features make DHM suitable for real-time quantitative PS phase imaging in a broad number of biological applications aimed at understanding cell growth and dynamic changes occurring during physiological processes and/or in response to pharmaceutical agents. AIM: The insertion of a Fresnel biprism (FB) in the image space of a light microscope potentially turns any commercial system into a DHM system enabling QPI with the five desired features in QPI simultaneously: high temporal sensitivity, high speed, high accuracy, high spatial resolution, and PS. To the best of our knowledge, this is the first FB-based DHM system providing these five features all together. APPROACH: The performance of the proposed system was calibrated with a benchmark phase object. The PS capability has been verified by imaging human U87 glioblastoma cells. RESULTS: The proposed FB-based DHM system provides accurate phase images with high spatial resolution. The temporal stability of our system is in the order of a few nanometers, enabling live-cell studies. Finally, the distinctive behavior of the cells at different polarization angles (e.g., PS capability) can be observed with our system. CONCLUSIONS: We have presented a method to turn any commercial light microscope with monochromatic illumination into a PS QPI system. The proposed system provides accurate quantitative PS phase images in a new, simple, compact, and cost-effective format, thanks to the low cost (a few hundred dollars) involved in implementing this simple architecture, enabling the use of this QPI technique accessible to most laboratories with standard light microscopes.


Assuntos
Holografia , Microscopia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA