Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(22): 5839-5842, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966732

RESUMO

Phase-contrast imaging, dark-field, and directional dark-field imaging are recent x ray imaging modalities that have been demonstrated to reveal different information and contrast from those provided by conventional x ray imaging. Access to these new types of images is currently limited because the acquisitions require coherent sources such as synchrotron radiation or complicated optical setups. This Letter demonstrates the possibility of efficiently performing phase-contrast, dark-field, and directional dark-field imaging on a low-coherence laboratory system equipped with a conventional x ray tube, using a simple, fast, and robust single-mask technique.

2.
Proc Natl Acad Sci U S A ; 116(30): 14893-14898, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285331

RESUMO

Fibrous particles interact with cells and organisms in complex ways that can lead to cellular dysfunction, cell death, inflammation, and disease. The development of conductive transparent networks (CTNs) composed of metallic silver nanowires (AgNWs) for flexible touchscreen displays raises new possibilities for the intimate contact between novel fibers and human skin. Here, we report that a material property, nanowire-bending stiffness that is a function of diameter, controls the cytotoxicity of AgNWs to nonimmune cells from humans, mice, and fish without deterioration of critical CTN performance parameters: electrical conductivity and optical transparency. Both 30- and 90-nm-diameter AgNWs are readily internalized by cells, but thinner NWs are mechanically crumpled by the forces imposed during or after endocytosis, while thicker nanowires puncture the enclosing membrane and release silver ions and lysosomal contents to the cytoplasm, thereby initiating oxidative stress. This finding extends the fiber pathology paradigm and will enable the manufacture of safer products incorporating AgNWs.


Assuntos
Endossomos/metabolismo , Fibroblastos/efeitos dos fármacos , Lisossomos/metabolismo , Nanofios/toxicidade , Animais , Linhagem Celular , Células Cultivadas , Condutividade Elétrica , Fibroblastos/metabolismo , Peixes , Humanos , Camundongos , Nanofios/química , Estresse Oxidativo , Prata/química
3.
Anal Chem ; 92(7): 4814-4819, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32162903

RESUMO

X-ray microscopy is increasingly used in biology, but in most cases only in a qualitative way. We present here a 3D correlative cryo X-ray microscopy approach suited for the quantification of molar concentrations and structure in native samples at nanometer scale. The multimodal approach combines X-ray fluorescence and X-ray holographic nanotomography on "thick" frozen-hydrated cells. The quantitativeness of the X-ray fluorescence reconstruction is improved by estimating the self-attenuation from the 3D holography reconstruction. Applied to complex macrophage cells, we extract the quantification of major and minor elements heavier than phosphorus, as well as the density, in the different organelles. The intracellular landscape shows remarkable elemental differences. This novel analytical microscopy approach will be of particular interest to investigate complex biological and chemical systems in their native environment.


Assuntos
Macrófagos/química , Nanopartículas/análise , Imagem Óptica , Análise de Célula Única , Microscopia Crioeletrônica , Humanos , Macrófagos/citologia , Tamanho da Partícula , Propriedades de Superfície
4.
J Synchrotron Radiat ; 27(Pt 1): 185-198, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868751

RESUMO

Friedreich's ataxia (FRDA) is a neurodegenerative disease characterized by an increase in intracytoplasmic iron concentration. Here the nanoscale iron distribution within single fibroblasts from FRDA patients was investigated using synchrotron-radiation-based nanoscopic X-ray fluorescence and X-ray in-line holography at the ID16A nano-imaging beamline of the ESRF. This unique probe was deployed to uncover the iron cellular two-dimensional architecture of freeze-dried FRDA fibroblasts. An unsurpassed absolute detection capability of 180 iron atoms within a 30 nm × 50 nm nanoscopic X-ray beam footprint was obtained using state-of-the-art X-ray focusing optics and a large-solid-angle detection system. Various micrometre-sized iron-rich organelles could be revealed for the first time, tentatively identified as endoplasmic reticulum, mitochondria and lysosomes. Also a multitude of nanoscopic iron hot-spots were observed in the cytosol, interpreted as chaperoned iron within the fibroblast's labile iron pool. These observations enable new hypotheses on the storage and trafficking of iron in the cell and ultimately to a better understanding of iron-storage diseases such as Friedreich's ataxia.


Assuntos
Fibroblastos/química , Ataxia de Friedreich/patologia , Holografia/métodos , Ferro/análise , Análise de Célula Única/métodos , Espectrometria por Raios X/métodos , Carbono , Citoplasma/química , Fibroblastos/ultraestrutura , Liofilização , Humanos , Nanoestruturas , Organelas/química , Organelas/ultraestrutura , Análise de Célula Única/instrumentação , Síncrotrons , Fixação de Tecidos/métodos
5.
Nanomedicine ; 29: 102258, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32615338

RESUMO

High dose selenium acts as a cytotoxic agent, with potential applications in cancer treatment. However, clinical trials have failed to show any chemotherapeutic value of selenium at safe and tolerated doses (<90 µg/day). To enable the successful exploitation of selenium for cancer treatment, we evaluated inorganic selenium nanoparticles (SeNP), and found them effective in inhibiting ovarian cancer cell growth. In both SKOV-3 and OVCAR-3 ovarian cancer cell types SeNP treatment resulted in significant cytotoxicity. The two cell types displayed contrasting nanomechanical responses to SeNPs, with decreased surface roughness and membrane stiffness, characteristics of OVCAR-3 cell death. In SKOV-3, cell membrane surface roughness and stiffness increased, both properties associated with decreased metastatic potential. The beneficial effects of SeNPs on ovarian cancer cell death appear cell type dependent, and due to their low in vivo toxicity offer an exciting opportunity for future cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Nanopartículas Metálicas/química , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Fenômenos Biomecânicos , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Selênio/química , Selênio/farmacologia
6.
J Synchrotron Radiat ; 26(Pt 5): 1751-1762, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490167

RESUMO

X-ray ptychography is a coherent diffraction imaging technique with a high resolving power and excellent quantitative capabilities. Although very popular in synchrotron facilities nowadays, its implementation with X-ray energies above 15 keV is very rare due to the challenges imposed by the high energies. Here, the implementation of high-energy X-ray ptychography at 17 and 33.6 keV is demonstrated and solutions to overcome the important challenges are provided. Among the particular aspects addressed are the use of an efficient high-energy detector, a long synchrotron beamline for the high degree of spatial coherence, a beam with 1% monochromaticity providing high flux, and efficient multilayer coated Kirkpatrick-Baez X-ray optics to shape the beam. The constraints imposed by the large energy bandwidth are carefully analyzed, as well as the requirements to sample correctly the high-energy diffraction patterns with small speckle size. In this context, optimized scanning trajectories allow the total acquisition time to be reduced by up to 35%. The paper explores these innovative solutions at the ID16A nano-imaging beamline by ptychographic imaging of a 200 nm-thick gold lithography sample.


Assuntos
Óptica e Fotônica/instrumentação , Intensificação de Imagem Radiográfica/instrumentação , Síncrotrons , Desenho de Equipamento , Ouro/química , Modelos Teóricos , Difração de Raios X , Raios X
7.
Angew Chem Int Ed Engl ; 58(11): 3461-3465, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30663197

RESUMO

A series of tamoxifen-like metallocifens of the group-8 metals (Fe, Ru, and Os) has strong antiproliferative activity on the triple-negative breast cancer cells (MDA-MB-231). To shed light on the mechanism of action of these molecules, synchrotron radiation X-ray fluorescence nanoimaging studies were performed on cells exposed to osmocenyl-tamoxifen (Oc-OH-Tam) to disclose its intracellular distribution. High-resolution mapping of the lipophilic Oc-OH-Tam in cells revealed its preferential accumulation in the endomembrane system. This is consistent with the ability of the amino nitrogen chain of the compounds to be protonated at physiological pH and responsible for electrostatic interactions between Oc-OH-Tam and membranes. A comprehensive scenario is proposed that provides new insight into the cellular behavior and activation of Oc-OH-Tam and advances the understanding of its mechanism of action.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Compostos Organometálicos/química , Tamoxifeno/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Complexos de Coordenação/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Ferro/química , Ligantes , Imagem Molecular/métodos , Sondas Moleculares/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Osmio/química , Radiografia , Rutênio/química , Eletricidade Estática , Síncrotrons , Raios X
8.
Opt Express ; 26(25): 32847-32865, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645446

RESUMO

In propagation based phase contrast imaging, intensity patterns are recorded on a x-ray detector at one or multiple propagation distances, called in-line holograms. They form the input of an inversion algorithm that aims at retrieving the phase shift induced by the object. The problem of phase retrieval in in-line holography is an ill-posed inverse problem. Consequently an adequate solution requires some form of regularization with the most commonly applied being the classical Tikhonov regularization. While generally satisfying this method suffers from a few issues such as the choice of the regularization parameter. Here, we offer an alternative to the established method by applying the principles of Bayesian inference. We construct an iterative optimization algorithm capable of both retrieving the unknown phase and determining a multi-dimensional regularization parameter. In the end, we highlight the advantages of the introduced algorithm, chief among them being the unsupervised determination of the regularization parameter(s). The proposed approach is tested on both simulated and experimental data and is found to provide robust solutions, with improved response to typical issues like low frequency noise and the twin-image problem.

9.
Chemistry ; 23(11): 2512-2516, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28012260

RESUMO

A variety of transition metal complexes exhibit anticancer activity, but their target sites in cells need to be identified and mechanisms of action elucidated. Here, it was found that the sub-cellular distribution of [Os(η6 -p-cym)(Azpy-NMe2 )I]+ (p-cym=p-cymene, Azpy-NMe2 =2-(p-[dimethylamino]phenylazo)pyridine) (1), a promising drug candidate, can be mapped in human ovarian cancer cells at pharmacological concentrations using a synchrotron X-ray fluorescence nanoprobe (SXRFN). SXRFN data for Os, Zn, Ca, and P, as well as TEM and ICP analysis of mitochondrial fractions suggest localization of Os in mitochondria and not in the nucleus, accompanied by mobilization of Ca from the endoplasmic reticulum, a signaling event for cell death. These data are consistent with the ability of 1 to induce rapid bursts of reactive oxygen species and especially superoxide formed in the first step of O2 reduction in mitochondria. Such metabolic targeting differs from the action of Pt drugs, offering promise for combatting Pt resistance, which is a current clinical problem.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Corantes Fluorescentes/química , Nanoestruturas/química , Osmio/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Cimenos , Feminino , Humanos , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Monoterpenos/química , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Espécies Reativas de Oxigênio/metabolismo , Síncrotrons
10.
J Synchrotron Radiat ; 23(1): 344-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698084

RESUMO

Within the framework of the ESRF Phase I Upgrade Programme, a new state-of-the-art synchrotron beamline ID16B has been recently developed for hard X-ray nano-analysis. The construction of ID16B was driven by research areas with major scientific and societal impact such as nanotechnology, earth and environmental sciences, and bio-medical research. Based on a canted undulator source, this long beamline provides hard X-ray nanobeams optimized mainly for spectroscopic applications, including the combination of X-ray fluorescence, X-ray diffraction, X-ray excited optical luminescence, X-ray absorption spectroscopy and 2D/3D X-ray imaging techniques. Its end-station re-uses part of the apparatus of the earlier ID22 beamline, while improving and enlarging the spectroscopic capabilities: for example, the experimental arrangement offers improved lateral spatial resolution (∼50 nm), a larger and more flexible capability for in situ experiments, and monochromatic nanobeams tunable over a wider energy range which now includes the hard X-ray regime (5-70 keV). This paper describes the characteristics of this new facility, short-term technical developments and the first scientific results.

11.
Anal Chem ; 87(13): 6639-45, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26020362

RESUMO

Redox-active metals in the brain mediate numerous biochemical processes and are also implicated in a number of neurodegenerative diseases. A number of different approaches are available for quantitatively measuring the spatial distribution of biometals at an image resolution approaching the subcellular level. Measured biometal levels obtained using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS; spatial resolution 15 µm × 15 µm) were within the range of those obtained using X-ray fluorescence microscopy (XFM; spatial resolution 2 µm × 7 µm) and regional changes in metal concentration across discrete brain regions were replicated to the same degree. Both techniques are well suited to profiling changes in regional biometal distribution between healthy and diseased brain tissues, but absolute quantitation of metal levels varied significantly between methods, depending on the metal of interest. Where all possible variables affect metal levels, independent of a treatment/phenotype are controlled, either method is suitable for examining differences between experimental groups, though, as with any method for imaging post mortem brain tissue, care should be taken when interpreting the total metal levels with regard to physiological concentrations.


Assuntos
Espectrometria de Massas/métodos , Metais/análise , Microscopia de Fluorescência/métodos , Sistema Nervoso/química , Animais , Lasers , Camundongos , Camundongos Endogâmicos C57BL
12.
Neuroimage ; 96: 133-42, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24704457

RESUMO

The MAP6 (microtubule-associated protein 6) KO mouse is a microtubule-deficient model of schizophrenia that exhibits severe behavioral disorders that are associated with synaptic plasticity anomalies. These defects are alleviated not only by neuroleptics, which are the gold standard molecules for the treatment of schizophrenia, but also by Epothilone D (Epo D), which is a microtubule-stabilizing molecule. To compare the neuronal transport between MAP6 KO and wild-type mice and to measure the effect of Epo D treatment on neuronal transport in KO mice, MnCl2 was injected in the primary somatosensory cortex. Then, using manganese-enhanced magnetic resonance imaging (MEMRI), we followed the propagation of Mn(2+) through axonal tracts and brain regions that are connected to the somatosensory cortex. In MAP6 KO mice, the measure of the MRI relative signal intensity over 24h revealed that the Mn(2+) transport rate was affected with a stronger effect on long-range and polysynaptic connections than in short-range and monosynaptic tracts. The chronic treatment of MAP6 KO mice with Epo D strongly increased Mn(2+) propagation within both mono- and polysynaptic connections. Our results clearly indicate an in vivo deficit in neuronal Mn(2+) transport in KO MAP6 mice, which might be due to both axonal transport defects and synaptic transmission impairments. Epo D treatment alleviated the axonal transport defects, and this improvement most likely contributes to the positive effect of Epo D on behavioral defects in KO MAP6 mice.


Assuntos
Epotilonas/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Manganês/farmacocinética , Proteínas Associadas aos Microtúbulos/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Animais , Meios de Contraste , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Córtex Somatossensorial/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Resultado do Tratamento , Moduladores de Tubulina/uso terapêutico
13.
Hippocampus ; 24(5): 598-610, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24500839

RESUMO

Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful tool for in vivo tract tracing or functional imaging of the central nervous system. However Mn(2+) may be toxic at high levels. In this study, we addressed the impact of Mn(2+) on mouse hippocampal neurons (HN) and neuron-like N2a cells in culture, using several approaches. Both HN and N2a cells not exposed to exogenous MnCl2 were shown by synchrotron X-ray fluorescence to contain 5 mg/g Mn. Concentrations of Mn(2+) leading to 50% lethality (LC50) after 24 h of incubation were much higher for N2a cells (863 mM) than for HN (90 mM). The distribution of Mn(2+) in both cell types exposed to Mn(2+) concentrations below LC50 was perinuclear whereas that in cells exposed to concentrations above LC50 was more diffuse, suggesting an overloading of cell storage/detoxification capacity. In addition, Mn(2+) had a cell-type and dose-dependent impact on the total amount of intracellular P, Ca, Fe and Zn measured by synchrotron X-ray fluorescence. For HN neurons, immunofluorescence studies revealed that concentrations of Mn(2+) below LC50 shortened neuritic length and decreased mitochondria velocity after 24 h of incubation. Similar concentrations of Mn(2+) also facilitated the opening of the mitochondrial permeability transition pore in isolated mitochondria from rat brains. The sensitivity of primary HN to Mn(2+) demonstrated here supports their use as a relevant model to study Mn(2+) -induced neurotoxicity.


Assuntos
Hipocampo/citologia , Manganês/farmacologia , Neurônios/efeitos dos fármacos , Oligoelementos/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/patologia , Neurônios/ultraestrutura , Fósforo/metabolismo , Espectrometria por Raios X , Fatores de Tempo , Zinco/metabolismo
14.
J Med Chem ; 67(8): 6189-6206, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38577779

RESUMO

Identification of intracellular targets of anticancer drug candidates provides key information on their mechanism of action. Exploiting the ability of the anticancer (C∧N)-chelated half-sandwich iridium(III) complexes to covalently bind proteins, click chemistry with a bioorthogonal azido probe was used to localize a phenyloxazoline-chelated iridium complex within cells and profile its interactome at the proteome-wide scale. Proteins involved in protein folding and actin cytoskeleton regulation were identified as high-affinity targets. Upon iridium complex treatment, the folding activity of Heat Shock Protein HSP90 was inhibited in vitro and major cytoskeleton disorganization was observed. A wide array of imaging and biochemical methods validated selected targets and provided a multiscale overview of the effects of this complex on live human cells. We demonstrate that it behaves as a dual agent, inducing both electrophilic and oxidative stresses in cells that account for its cytotoxicity. The proposed methodological workflow can open innovative avenues in metallodrug discovery.


Assuntos
Antineoplásicos , Complexos de Coordenação , Irídio , Estresse Oxidativo , Humanos , Irídio/química , Irídio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Química Click
15.
Acta Biomater ; 170: 260-272, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574159

RESUMO

Amyloid-ß (Aß) plaques from Alzheimer's Disease (AD) can be visualized ex vivo in label-free brain samples using synchrotron X-ray phase-contrast tomography (XPCT). However, for XPCT to be useful as a screening method for amyloid pathology, it is essential to understand which factors drive the detection of Aß plaques. The current study was designed to test the hypothesis that Aß-related contrast in XPCT could be caused by Aß fibrils and/or by metals trapped in the plaques. Fibrillar and elemental compositions of Aß plaques were probed in brain samples from different types of AD patients and AD models to establish a relationship between XPCT contrast and Aß plaque characteristics. XPCT, micro-Fourier-Transform Infrared spectroscopy and micro-X-Ray Fluorescence spectroscopy were conducted on human samples (one genetic and one sporadic case) and on four transgenic rodent strains (mouse: APPPS1, ArcAß, J20; rat: TgF344). Aß plaques from the genetic AD patient were visible using XPCT, and had higher ß-sheet content and higher metal levels than those from the sporadic AD patient, which remained undetected by XPCT. Aß plaques in J20 mice and TgF344 rats appeared hyperdense on XPCT images, while they were hypodense with a hyperdense core in the case of APPPS1 and ArcAß mice. In all four transgenic strains, ß-sheet content was similar, while metal levels were highly variable: J20 (zinc and iron) and TgF344 (copper) strains showed greater metal accumulation than APPPS1 and ArcAß mice. Hence, a hyperdense contrast formation of Aß plaques in XPCT images was associated with biometal entrapment within plaques. STATEMENT OF SIGNIFICANCE: The role of metals in Alzheimer's disease (AD) has been a subject of continuous interest. It was already known that amyloid-ß plaques (Aß), the earliest hallmark of AD, tend to trap endogenous biometals like zinc, iron and copper. Here we show that this metal accumulation is the main reason why Aß plaques are detected with a new technique called X-ray phase contrast tomography (XPCT). XPCT enables to map the distribution of Aß plaques in the whole excised brain without labeling. In this work we describe a unique collection of four transgenic models of AD, together with a human sporadic and a rare genetic case of AD, thus exploring the full spectrum of amyloid contrast in XPCT.


Assuntos
Doença de Alzheimer , Oligoelementos , Humanos , Camundongos , Animais , Ratos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Cobre/química , Raios X , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Metais , Zinco/química , Ferro , Encéfalo/metabolismo , Amiloide , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/química , Modelos Animais de Doenças
16.
Redox Biol ; 61: 102641, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842241

RESUMO

At physiological levels, the trace element selenium plays a key role in redox reactions through the incorporation of selenocysteine in antioxidant enzymes. Selenium has also been evaluated as a potential anti-cancer agent, where selenium nanoparticles have proven effective, and are well tolerated in vivo at doses that are toxic as soluble Se. The use of such nanoparticles, coated with either serum albumin or the naturally occurring alkaline polysaccharide chitosan, also serves to enhance biocompatibility and bioavailability. Here we demonstrate a novel role for selenium in regulating histone methylation in ovarian cancer cell models treated with inorganic selenium nanoparticles coated with serum albumin or chitosan. As well as inducing thioredoxin reductase expression, ROS activity and cancer cell cytotoxicity, coated nanoparticles caused significant increases in histone methylation. Specifically, selenium nanoparticles triggered an increase in the methylation of histone 3 at lysines K9 and K27, histone marks involved in both the activation and repression of gene expression, thus suggesting a fundamental role for selenium in these epigenetic processes. This direct function was confirmed using chemical inhibitors of the histone lysine methyltransferases EZH2 (H3K27) and G9a/EHMT2 (H3K9), both of which blocked the effect of selenium on histone methylation. This novel role for selenium supports a distinct function in histone methylation that occurs due to a decrease in S-adenosylhomocysteine, an endogenous inhibitor of lysine methyltransferases, the metabolic product of methyl-group transfer from S-adenosylmethionine in the one-carbon metabolism pathway. These observations provide important new insights into the action of selenium nanoparticles. It is now important to consider both the classic antioxidant and novel histone methylation effects of this key redox element in its development in cancer therapy and other applications.


Assuntos
Quitosana , Selênio , Histonas/metabolismo , Metilação , Selênio/metabolismo , Lisina/metabolismo , S-Adenosil-Homocisteína/metabolismo , Antioxidantes/metabolismo , Quitosana/metabolismo , Histona-Lisina N-Metiltransferase/genética
17.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38063696

RESUMO

Selenium 0 (Se0) is a powerful anti-proliferative agent in cancer research. We investigated the impact of sub-toxic concentrations of Se0 functionalized nanoparticles (SeNPs) on prostate cancer PC-3 cells and determined their intracellular localization and fate. An in-depth characterization of functionalized selenium nanoparticles composition is proposed to certify that no chemical bias relative to synthesis issues might have impacted the study. Selenium is an extremely diluted element in the biological environment and therefore requires high-performance techniques with a very low detection limit and high spatial resolution for intracellular imaging. This was explored with state-of-the-art techniques, but also with cryopreparation to preserve the chemical and structural integrity of the cells for spatially resolved and speciation techniques. Monodisperse solutions of SeNPs capped with bovine serum albumin (BSA) were shown to slow down the migration capacity of aggressive prostate cancer cells compared to polydisperse solutions of SeNPs capped with chitosan. BSA coating could prevent interactions between the reactive surface of the nanoparticles and the plasma membrane, mitigating the generation of reactive oxygen species. The intracellular localization showed interaction with mitochondria and also a localization in the lysosome-related organelle. The SeNPs-BSA localization in mitochondria constitute a possible explanation for our result showing a very significant dampening of the PC-3 cell proliferation capabilities. The purpose of the use of sublethal compound concentrations was to limit adverse effects resulting from high cell death to best evaluate some cellular changes and the fate of these SeNPs on PC-3. Our findings provide new insight to further study the various mechanisms of cytotoxicity of SeNPs.

18.
J Struct Biol ; 177(2): 239-47, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22182730

RESUMO

Hard X-ray fluorescence microscopy and magnified phase contrast imaging are combined to obtain quantitative maps of the projected metal concentration in whole cells. The experiments were performed on freeze dried cells at the nano-imaging station ID22NI of the European Synchrotron Radiation Facility (ESRF). X-ray fluorescence analysis gives the areal mass of most major, minor and trace elements; it is validated using a biological standard of known composition. Quantitative phase contrast imaging provides maps of the projected mass and is validated using calibration samples and through comparison with Atomic Force Microscopy and Scanning Transmission Ion Microscopy. Up to now, absolute quantification at the sub-cellular level was impossible using X-ray fluorescence microscopy but can be reached with the use of the proposed approach.


Assuntos
Oligoelementos/metabolismo , Algoritmos , Animais , Calibragem , Núcleo Celular/metabolismo , Microscopia de Fluorescência/métodos , Microscopia de Contraste de Fase/métodos , Microscopia de Contraste de Fase/normas , Células PC12 , Tamanho da Partícula , Potássio/metabolismo , Ratos , Padrões de Referência , Análise de Célula Única , Raios X , Zinco/metabolismo
19.
Biochim Biophys Acta ; 1808(12): 2807-18, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21864503

RESUMO

TRPC6 are plasma membrane cation channels. By means of live-cell imaging and spectroscopic methods, we found that HEK cells expressing TRPC6 channels (HEK-TRPC6) are enriched in zinc and sulphur and have a reduced copper content when compared to HEK cells and HEK cells expressing TRPC3 channels (HEK-TRPC3). Hence, HEK-TRPC6 cells have larger pools of mobilizable Zn2+ and are more sensitive to an oxidative stress. Synchrotron X-ray fluorescence experiments showed a higher zinc content in the nuclear region indicating that the intracellular distribution of this metal was influenced by the over-expression of TRPC6 channels. Their properties were investigated with the diacylglycerol analogue SAG and the plant extract hyperforin. Electrophysiological recordings and imaging experiments with the fluorescent Zn2+ probe FluoZin-3 demonstrated that TRPC6 channels form Zn2+-conducting channels. In cortical neurons, hyperforin-sensitive channels co-exist with voltage-gated channels, AMPA and NMDA receptors, which are known to transport Zn2+. The ability of these channels to regulate the size of the mobilizable pools of Zn2+ was compared. The data collected indicate that the entry of Zn2+ through TRPC6 channels can up-regulate the size of the DTDP-sensitive pool of Zn2+. By showing that TRPC6 channels constitute a Zn2+ entry pathway, our study suggests that they could play a role in zinc homeostasis.


Assuntos
Canais de Cátion TRPC/metabolismo , Zinco/metabolismo , Linhagem Celular , Colorimetria , Corantes Fluorescentes/metabolismo , Homeostase , Humanos , Canal de Cátion TRPC6
20.
J Synchrotron Radiat ; 19(Pt 1): 10-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22186639

RESUMO

The ESRF synchrotron beamline ID22, dedicated to hard X-ray microanalysis and consisting of the combination of X-ray fluorescence, X-ray absorption spectroscopy, diffraction and 2D/3D X-ray imaging techniques, is one of the most versatile instruments in hard X-ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.


Assuntos
Síncrotrons/instrumentação , Arsenitos/análise , Núcleo Celular/química , Citosol/química , Dano ao DNA/efeitos dos fármacos , Microanálise por Sonda Eletrônica , Complexo de Golgi/fisiologia , Células Hep G2 , Humanos , Manganês/metabolismo , Mitocôndrias/química , Nanopartículas/uso terapêutico , Espectrometria por Raios X/métodos , Espectroscopia por Absorção de Raios X/métodos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA