Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Plant J ; 117(3): 766-785, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37960967

RESUMO

The plant-specialized metabolite montbretin A (MbA) is being developed as a new treatment option for type-2 diabetes, which is among the ten leading causes of premature death and disability worldwide. MbA is a complex acylated flavonoid glycoside produced in small amounts in below-ground organs of the perennial plant Montbretia (Crocosmia × crocosmiiflora). The lack of a scalable production system limits the development and potential application of MbA as a pharmaceutical or nutraceutical. Previous efforts to reconstruct montbretin biosynthesis in Nicotiana benthamiana (Nb) resulted in low yields of MbA and higher levels of montbretin B (MbB) and montbretin C (MbC). MbA, MbB, and MbC are nearly identical metabolites differing only in their acyl moieties, derived from caffeoyl-CoA, coumaroyl-CoA, and feruloyl-CoA, respectively. In contrast to MbA, MbB and MbC are not pharmaceutically active. To utilize the montbretia caffeoyl-CoA biosynthesis for improved MbA engineering in Nb, we cloned and characterized enzymes of the shikimate shunt of the general phenylpropanoid pathway, specifically hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (CcHCT), p-coumaroylshikimate 3'-hydroxylase (CcC3'H), and caffeoylshikimate esterase (CcCSE). Gene expression patterns suggest that CcCSE enables the predominant formation of MbA, relative to MbB and MbC, in montbretia. This observation is supported by results from in vitro characterization of CcCSE and reconstruction of the shikimate shunt in yeast. Using CcHCT together with montbretin biosynthetic genes in multigene constructs resulted in a 30-fold increase of MbA in Nb. This work advances our understanding of the phenylpropanoid pathway and features a critical step towards improved MbA production in bioengineered Nb.


Assuntos
Flavonas , Hipoglicemiantes , Nicotiana , Trissacarídeos , Hipoglicemiantes/metabolismo , Nicotiana/genética , Ácido Chiquímico/metabolismo , Plantas/metabolismo
2.
Genome Res ; 32(10): 1952-1964, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109148

RESUMO

We assembled the 9.8-Gbp genome of western redcedar (WRC; Thuja plicata), an ecologically and economically important conifer species of the Cupressaceae. The genome assembly, derived from a uniquely inbred tree produced through five generations of self-fertilization (selfing), was determined to be 86% complete by BUSCO analysis, one of the most complete genome assemblies for a conifer. Population genomic analysis revealed WRC to be one of the most genetically depauperate wild plant species, with an effective population size of approximately 300 and no significant genetic differentiation across its geographic range. Nucleotide diversity, π, is low for a continuous tree species, with many loci showing zero diversity, and the ratio of π at zero- to fourfold degenerate sites is relatively high (approximately 0.33), suggestive of weak purifying selection. Using an array of genetic lines derived from up to five generations of selfing, we explored the relationship between genetic diversity and mating system. Although overall heterozygosity was found to decline faster than expected during selfing, heterozygosity persisted at many loci, and nearly 100 loci were found to deviate from expectations of genetic drift, suggestive of associative overdominance. Nonreference alleles at such loci often harbor deleterious mutations and are rare in natural populations, implying that balanced polymorphisms are maintained by linkage to dominant beneficial alleles. This may account for how WRC remains responsive to natural and artificial selection, despite low genetic diversity.


Assuntos
Traqueófitas , Traqueófitas/genética , Autofertilização/genética , Alelos , Heterozigoto , Polimorfismo Genético , Variação Genética , Seleção Genética
3.
BMC Genomics ; 25(1): 118, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281030

RESUMO

Conifers are long-lived and slow-evolving, thus requiring effective defences against their fast-evolving insect natural enemies. The copy number variation (CNV) of two key acetophenone biosynthesis genes Ugt5/Ugt5b and ßglu-1 may provide a plausible mechanism underlying the constitutively variable defence in white spruce (Picea glauca) against its primary defoliator, spruce budworm. This study develops a long-insert sequence capture probe set (Picea_hung_p1.0) for quantifying copy number of ßglu-1-like, Ugt5-like genes and single-copy genes on 38 Norway spruce (Picea abies) and 40 P. glauca individuals from eight and nine provenances across Europe and North America respectively. We developed local assemblies (Piabi_c1.0 and Pigla_c.1.0), full-length transcriptomes (PIAB_v1 and PIGL_v1), and gene models to characterise the diversity of ßglu-1 and Ugt5 genes. We observed very large copy numbers of ßglu-1, with up to 381 copies in a single P. glauca individual. We observed among-provenance CNV of ßglu-1 in P. glauca but not P. abies. Ugt5b was predominantly single-copy in both species. This study generates critical hypotheses for testing the emergence and mechanism of extreme CNV, the dosage effect on phenotype, and the varying copy number of genes with the same pathway. We demonstrate new approaches to overcome experimental challenges in genomic research in conifer defences.


Assuntos
Picea , Humanos , Picea/genética , Picea/metabolismo , Variações do Número de Cópias de DNA , beta-Glucosidase/genética , Genômica , Transcriptoma
4.
Plant J ; 111(5): 1469-1485, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35789009

RESUMO

Spruces (Picea spp.) are coniferous trees widespread in boreal and mountainous forests of the northern hemisphere, with large economic significance and enormous contributions to global carbon sequestration. Spruces harbor very large genomes with high repetitiveness, hampering their comparative analysis. Here, we present and compare the genomes of four different North American spruces: the genome assemblies for Engelmann spruce (Picea engelmannii) and Sitka spruce (Picea sitchensis) together with improved and more contiguous genome assemblies for white spruce (Picea glauca) and for a naturally occurring introgress of these three species known as interior spruce (P. engelmannii × glauca × sitchensis). The genomes were structurally similar, and a large part of scaffolds could be anchored to a genetic map. The composition of the interior spruce genome indicated asymmetric contributions from the three ancestral genomes. Phylogenetic analysis of the nuclear and organelle genomes revealed a topology indicative of ancient reticulation. Different patterns of expansion of gene families among genomes were observed and related with presumed diversifying ecological adaptations. We identified rapidly evolving genes that harbored high rates of non-synonymous polymorphisms relative to synonymous ones, indicative of positive selection and its hitchhiking effects. These gene sets were mostly distinct between the genomes of ecologically contrasted species, and signatures of convergent balancing selection were detected. Stress and stimulus response was identified as the most frequent function assigned to expanding gene families and rapidly evolving genes. These two aspects of genomic evolution were complementary in their contribution to divergent evolution of presumed adaptive nature. These more contiguous spruce giga-genome sequences should strengthen our understanding of conifer genome structure and evolution, as their comparison offers clues into the genetic basis of adaptation and ecology of conifers at the genomic level. They will also provide tools to better monitor natural genetic diversity and improve the management of conifer forests. The genomes of four closely related North American spruces indicate that their high similarity at the morphological level is paralleled by the high conservation of their physical genome structure. Yet, the evidence of divergent evolution is apparent in their rapidly evolving genomes, supported by differential expansion of key gene families and large sets of genes under positive selection, largely in relation to stimulus and environmental stress response.


Assuntos
Picea , Traqueófitas , Etiquetas de Sequências Expressas , Genoma de Planta/genética , Família Multigênica/genética , Filogenia , Picea/genética , Traqueófitas/genética
5.
BMC Genomics ; 24(1): 390, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430186

RESUMO

BACKGROUND: The mountain pine beetle, Dendroctonus ponderosae, is an irruptive bark beetle that causes extensive mortality to many pine species within the forests of western North America. Driven by climate change and wildfire suppression, a recent mountain pine beetle (MPB) outbreak has spread across more than 18 million hectares, including areas to the east of the Rocky Mountains that comprise populations and species of pines not previously affected. Despite its impacts, there are few tactics available to control MPB populations. Beauveria bassiana is an entomopathogenic fungus used as a biological agent in agriculture and forestry and has potential as a management tactic for the mountain pine beetle population. This work investigates the phenotypic and genomic variation between B. bassiana strains to identify optimal strains against a specific insect. RESULTS: Using comparative genome and transcriptome analyses of eight B. bassiana isolates, we have identified the genetic basis of virulence, which includes oosporein production. Genes unique to the more virulent strains included functions in biosynthesis of mycotoxins, membrane transporters, and transcription factors. Significant differential expression of genes related to virulence, transmembrane transport, and stress response was identified between the different strains, as well as up to nine-fold upregulation of genes involved in the biosynthesis of oosporein. Differential correlation analysis revealed transcription factors that may be involved in regulating oosporein production. CONCLUSION: This study provides a foundation for the selection and/or engineering of the most effective strain of B. bassiana for the biological control of mountain pine beetle and other insect pests populations.


Assuntos
Beauveria , Besouros , Animais , Beauveria/genética , Virulência/genética , Genômica
6.
Plant J ; 101(1): 37-56, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469934

RESUMO

The cannabis leaf is iconic, but it is the flowers of cannabis that are consumed for the psychoactive and medicinal effects of their specialized metabolites. Cannabinoid metabolites, together with terpenes, are produced in glandular trichomes. Superficially, stalked and sessile trichomes in cannabis only differ in size and whether they have a stalk. The objectives of this study were: to define each trichome type using patterns of autofluorescence and secretory cell numbers, to test the hypothesis that stalked trichomes develop from sessile-like precursors, and to test whether metabolic specialization occurs in cannabis glandular trichomes. A two-photon microscopy technique using glandular trichome intrinsic autofluorescence was developed which demonstrated that stalked glandular trichomes possessed blue autofluorescence correlated with high cannabinoid levels. These stalked trichomes had 12-16 secretory disc cells and strongly monoterpene-dominant terpene profiles. In contrast, sessile trichomes on mature flowers and vegetative leaves possessed red-shifted autofluorescence, eight secretory disc cells and less monoterpene-dominant terpene profiles. Moreover, intrinsic autofluorescence patterns and disc cell numbers supported a developmental model where stalked trichomes develop from apparently sessile trichomes. Transcriptomes of isolated floral trichomes revealed strong expression of cannabinoid and terpene biosynthetic genes, as well as uncharacterized genes highly co-expressed with CBDA synthase. Identification and characterization of two previously unknown and highly expressed monoterpene synthases highlighted the metabolic specialization of stalked trichomes for monoterpene production. These unique properties and highly expressed genes of cannabis trichomes determine the medicinal, psychoactive and sensory properties of cannabis products.


Assuntos
Cannabis/metabolismo , Flores/metabolismo , Tricomas/genética , Cannabis/genética , Flores/genética , Microscopia de Fluorescência , Folhas de Planta/genética , Folhas de Planta/metabolismo , Terpenos/metabolismo
7.
Plant Physiol ; 184(1): 97-109, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647038

RESUMO

Diabetes and obesity are affecting human health worldwide. Their occurrence is increasing with lifestyle choices, globalization of food systems, and economic development. The specialized plant metabolite montbretin A (MbA) is being developed as an antidiabetes and antiobesity treatment due to its potent and specific inhibition of the human pancreatic α-amylase. MbA is a complex acylated flavonol glycoside formed in small amounts in montbretia (Crocosmia × crocosmiiflora) corms during the early summer. The spatial and temporal patterns of MbA accumulation limit its supply for drug development and application. We are exploring MbA biosynthesis to enable metabolic engineering of this rare and valuable compound. Genes and enzymes for the first four steps of MbA biosynthesis, starting from the flavonol precursor myricetin, have recently been identified. Here, we describe the gene discovery and functional characterization of the final two enzymes of MbA biosynthesis. The UDP-glycosyltransferases, CcUGT4 and CcUGT5, catalyze consecutive reactions in the formation of the disaccharide moiety at the 4'-hydroxy position of the MbA flavonol core. CcUGT4 is a flavonol glycoside 4'-O-xylosyltransferase that acts on the second to last intermediate (MbA-XR2) in the pathway. CcUGT5 is a flavonol glycoside 1,4-rhamnosyltransferase that converts the final intermediate (MbA-R2) to complete the MbA molecule. Both enzymes belong to the UGT family d-clade and are specific for flavonol glycosides and their respective sugar donors. This study concludes the discovery of the MbA biosynthetic pathway and provides the complete set of genes to engineer MbA biosynthesis. We demonstrate successful reconstruction of MbA biosynthesis in Nicotiana benthamiana.


Assuntos
Flavonas/metabolismo , Trissacarídeos/metabolismo , Vias Biossintéticas , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
8.
Plant Cell ; 30(8): 1864-1886, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29967287

RESUMO

Plant specialized metabolism serves as a rich resource of biologically active molecules for drug discovery. The acylated flavonol glycoside montbretin A (MbA) and its precursor myricetin 3-O-(6'-O-caffeoyl)-glucosyl rhamnoside (mini-MbA) are potent inhibitors of human pancreatic α-amylase and are being developed as drug candidates to treat type-2 diabetes. MbA occurs in corms of the ornamental plant montbretia (Crocosmia x crocosmiiflora), but a system for large-scale MbA production is currently unavailable. Biosynthesis of MbA from the flavonol myricetin and MbA accumulation occur during early stages of corm development. We established myricetin 3-O-rhamnoside (MR), myricetin 3-O-glucosyl rhamnoside (MRG), and mini-MbA as the first three intermediates of MbA biosynthesis. Contrasting the transcriptomes of young and old corms revealed differentially expressed UDP-sugar-dependent glycosyltransferases (UGTs) and BAHD-acyltransferases (BAHD-ATs). UGT77B2 and UGT709G2 catalyze the consecutive glycosylation of myricetin to produce MR and of MR to give MRG, respectively. In addition, two BAHD-ATs, CcAT1 and CcAT2, catalyze the acylation of MRG to complete the formation of mini-MbA. Transcript profiles of UGT77B2, UGT709G2, CcAT1, and CcAT2 during corm development matched the metabolite profile of MbA accumulation. Expression of these enzymes in wild tobacco (Nicotiana benthamiana) resulted in the formation of a surrogate mini-MbA, validating the potential for metabolic engineering of mini-MbA in a heterologous plant system.


Assuntos
Aciltransferases/metabolismo , Flavonas/metabolismo , Glicosiltransferases/metabolismo , Nicotiana/metabolismo , Trissacarídeos/metabolismo , Aciltransferases/genética , Glicosiltransferases/genética , Proteínas de Plantas/metabolismo
9.
Appl Microbiol Biotechnol ; 105(6): 2541-2557, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33590267

RESUMO

The mountain pine beetle, Dendroctonus ponderosae, has infested over ~16 Mha of pine forests in British Columbia killing >50% of mature lodgepole pine, Pinus contorta, trees in affected stands. At present, it is functionally an invasive species in Alberta, killing and reproducing in evolutionarily naïve populations of lodgepole pine (P. contorta), novel jack pine (P. banksiana), and their hybrids. The entomopathogenic fungus Beauveria bassiana has shown some potential as a biocontrol agent of several bark beetle species. In this study, nine isolates of B. bassiana were examined for insect virulence characteristics, including conidiation rate, pigmentation, and infection rate in laboratory-reared D. ponderosae, to assess for their potential as biocontrol agents. The strains were categorized into three phenotypic groups based on pigmentation, conidial density, and myceliation rate. Virulence screening utilizing insect-based agar medium (D. ponderosae and European honeybee Apis mellifera carcasses) revealed no difference in selection of fungal growth. However, infection studies on D. ponderosae and A. mellifera showed contrasting results. In vivo A. mellifera infection model revealed ~5% mortality, representing the natural death rate of the hive population, whereas laboratory-reared D. ponderosae showed 100% mortality and mycosis. The LT50 (median lethal time 50) ranges from 2 to 5 ± 0.33 days, and LT100 ranges from 4 to 6 ± 0.5 days. We discuss the selective advantages of the three phenotypic groups in terms of virulence, pigmentation, conidial abundance, and tolerance to abiotic factors like UV and host tree monoterpenes. These results can further provide insights into the development of several phenotypically diverse B. bassiana strains in controlling the spread of the invasive D. ponderosae in Western Canada. KEY POINTS: • Three B. bassiana morphotype groups have been demonstrated to kill D. ponderosae. • A range of effective lethal times (LT50 and LT100) was established against D. ponderosae. • Variable tolerance to UV light and pine monoterpenes were observed in B. bassiana.


Assuntos
Beauveria , Besouros , Pinus , Gorgulhos , Animais , Colúmbia Britânica
10.
Proc Natl Acad Sci U S A ; 115(14): 3652-3657, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555742

RESUMO

A recent outbreak of mountain pine beetle (MPB) has spread over more than 25 million hectares of pine forests in western North America, affecting pine species of sensitive boreal and mountain ecosystems. During initial host colonization, female MPB produce and release the aggregation pheromone trans-verbenol to coordinate a mass attack of individual trees. trans-Verbenol is formed by hydroxylation of α-pinene, a monoterpene of the pine oleoresin defense. It is thought that adult females produce and immediately release trans-verbenol when encountering α-pinene on a new host tree. Here, we show that both sexes of MPB accumulate the monoterpenyl esters verbenyl oleate and verbenyl palmitate during their development in the brood tree. Verbenyl oleate and verbenyl palmitate were retained in adult female MPB until the time of emergence from brood trees, but were depleted in males. Adult females released trans-verbenol in response to treatment with juvenile hormone III (JHIII). While both sexes produced verbenyl esters when exposed to α-pinene, only females responded to JHIII with release of trans-verbenol. Accumulation of verbenyl esters at earlier life stages may allow adult females to release the aggregation pheromone trans-verbenol upon landing on a new host tree, independent of access to α-pinene. Formation of verbenyl esters may be part of a general detoxification system to overcome host monoterpene defenses in both sexes, from which a specialized and female-specific system of pheromone biosynthesis and release may have evolved.


Assuntos
Besouros/fisiologia , Ésteres/farmacologia , Monoterpenos/metabolismo , Monoterpenos/farmacologia , Feromônios/metabolismo , Pinus/química , Sesquiterpenos/farmacologia , Animais , Monoterpenos Bicíclicos , Besouros/efeitos dos fármacos , Feminino , Masculino , Comportamento Sexual/efeitos dos fármacos
11.
PLoS Genet ; 14(11): e1007807, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30458008

RESUMO

Chardonnay is the basis of some of the world's most iconic wines and its success is underpinned by a historic program of clonal selection. There are numerous clones of Chardonnay available that exhibit differences in key viticultural and oenological traits that have arisen from the accumulation of somatic mutations during centuries of asexual propagation. However, the genetic variation that underlies these differences remains largely unknown. To address this knowledge gap, a high-quality, diploid-phased Chardonnay genome assembly was produced from single-molecule real time sequencing, and combined with re-sequencing data from 15 different Chardonnay clones. There were 1620 markers identified that distinguish the 15 clones. These markers were reliably used for clonal identification of independently sourced genomic material, as well as in identifying a potential genetic basis for some clonal phenotypic differences. The predicted parentage of the Chardonnay haplomes was elucidated by mapping sequence data from the predicted parents of Chardonnay (Gouais blanc and Pinot noir) against the Chardonnay reference genome. This enabled the detection of instances of heterosis, with differentially-expanded gene families being inherited from the parents of Chardonnay. Most surprisingly however, the patterns of nucleotide variation present in the Chardonnay genome indicate that Pinot noir and Gouais blanc share an extremely high degree of kinship that has resulted in the Chardonnay genome displaying characteristics that are indicative of inbreeding.


Assuntos
Vitis/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Marcadores Genéticos , Variação Genética , Genoma de Planta , Genômica , Mutação INDEL , Endogamia , Mutação , Fenótipo , Filogenia , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Vitis/classificação , Vinho
12.
Bioinformatics ; 35(21): 4430-4432, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095290

RESUMO

MOTIVATION: In the modern genomics era, genome sequence assemblies are routine practice. However, depending on the methodology, resulting drafts may contain considerable base errors. Although utilities exist for genome base polishing, they work best with high read coverage and do not scale well. We developed ntEdit, a Bloom filter-based genome sequence editing utility that scales to large mammalian and conifer genomes. RESULTS: We first tested ntEdit and the state-of-the-art assembly improvement tools GATK, Pilon and Racon on controlled Escherichia coli and Caenorhabditis elegans sequence data. Generally, ntEdit performs well at low sequence depths (<20×), fixing the majority (>97%) of base substitutions and indels, and its performance is largely constant with increased coverage. In all experiments conducted using a single CPU, the ntEdit pipeline executed in <14 s and <3 m, on average, on E.coli and C.elegans, respectively. We performed similar benchmarks on a sub-20× coverage human genome sequence dataset, inspecting accuracy and resource usage in editing chromosomes 1 and 21, and whole genome. ntEdit scaled linearly, executing in 30-40 m on those sequences. We show how ntEdit ran in <2 h 20 m to improve upon long and linked read human genome assemblies of NA12878, using high-coverage (54×) Illumina sequence data from the same individual, fixing frame shifts in coding sequences. We also generated 17-fold coverage spruce sequence data from haploid sequence sources (seed megagametophyte), and used it to edit our pseudo haploid assemblies of the 20 Gb interior and white spruce genomes in <4 and <5 h, respectively, making roughly 50M edits at a (substitution+indel) rate of 0.0024. AVAILABILITY AND IMPLEMENTATION: https://github.com/bcgsc/ntedit. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Genoma Humano , Haploidia , Humanos , Análise de Sequência de DNA , Software
13.
Plant Physiol ; 180(3): 1277-1290, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004005

RESUMO

The plant metabolite montbretin A (MbA) and its precursor mini-MbA are potential new drugs for treating type 2 diabetes. These complex acylated flavonol glycosides only occur in small amounts in the corms of the ornamental plant montbretia (Crocosmia × crocosmiiflora). Our goal is to metabolically engineer Nicotiana benthamiana using montbretia genes to achieve increased production of mini-MbA and MbA. Two montbretia UDP-dependent glycosyltransferases (UGTs), CcUGT1 and CcUGT2, catalyze the formation of the first two pathway-specific intermediates in MbA biosynthesis, myricetin 3-O-rhamnoside and myricetin 3-O-glucosyl rhamnoside. In previous work, expression of these UGTs in N. benthamiana resulted in small amounts of kaempferol glycosides but not myricetin glycosides, suggesting that myricetin was limiting. Here, we investigated montbretia genes and enzymes of flavonol biosynthesis to enhance myricetin formation in N. benthamiana We characterized two flavanone hydroxylases, a flavonol synthase, a flavonoid 3'-hydroxylase (F3'H), and a flavonoid 3'5'-hydroxylase (F3'5'H). Montbretia flavonol synthase converted dihydromyricetin into myricetin. Unexpectedly, montbretia F3'5'H shared higher sequence relatedness with F3'Hs in the CYP75B subfamily of cytochromes P450 than with those with known F3'5'H activity. Transient expression of combinations of montbretia flavonol biosynthesis genes and a montbretia MYB transcription factor in N. benthamiana resulted in availability of myricetin for MbA biosynthesis. Transient coexpression of montbretia flavonol biosynthesis genes combined with CcUGT1 and CcUGT2 in N. benthamiana resulted in 2 mg g-1 fresh weight of the MbA pathway-specific compound myricetin 3-O-glucosyl rhamnoside. Additional expression of the montbretia acyltransferase CcAT1 led to detectable levels of mini-MbA in N. benthamiana.


Assuntos
Vias Biossintéticas/genética , Flavonas/biossíntese , Flavonóis/biossíntese , Hipoglicemiantes/metabolismo , Engenharia Metabólica/métodos , Nicotiana/metabolismo , Trissacarídeos/biossíntese , Flavonas/química , Flavonóis/química , Regulação da Expressão Gênica de Plantas , Glicosídeos/química , Glicosídeos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Hipoglicemiantes/química , Isoenzimas/genética , Isoenzimas/metabolismo , Quempferóis/química , Quempferóis/metabolismo , Manosídeos/química , Manosídeos/metabolismo , Modelos Químicos , Estrutura Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Trissacarídeos/química
14.
J Chem Ecol ; 45(2): 178-186, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30043088

RESUMO

The mountain pine beetle (MPB, Dendroctonus ponderosae) is a forest insect pest endemic to western North America. During dispersal and host colonization, MPB identify suitable host trees by olfaction of monoterpene volatiles, contend with host terpene defenses, and communicate with conspecifics using terpenoid and other pheromones. Cytochromes P450 (P450s) have been proposed to function in MPB olfaction, terpene detoxification, and pheromone biosynthesis. Here, we identified P450s that were abundant in the antennae transcriptome. Analysis of transcript levels across different life stages and tissues in females and males showed additional expression of most of these P450s in the midgut or fat body. These expression profiles suggest specific or overlapping functions in olfaction, detoxification, and pheromone biosynthesis.


Assuntos
Antenas de Artrópodes/metabolismo , Besouros/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Besouros/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/genética , Corpo Adiposo/metabolismo , Feminino , Estágios do Ciclo de Vida , Masculino , Feromônios/química , Feromônios/metabolismo , RNA/isolamento & purificação , RNA/metabolismo , Olfato , Transcriptoma
15.
Nature ; 497(7451): 579-84, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23698360

RESUMO

Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Picea/genética , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , Inativação Gênica , Genes de Plantas/genética , Genômica , Internet , Íntrons/genética , Fenótipo , RNA não Traduzido/genética , Análise de Sequência de DNA , Sequências Repetidas Terminais/genética , Transcrição Gênica/genética
16.
BMC Bioinformatics ; 19(1): 393, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367597

RESUMO

BACKGROUND: Genome sequencing yields the sequence of many short snippets of DNA (reads) from a genome. Genome assembly attempts to reconstruct the original genome from which these reads were derived. This task is difficult due to gaps and errors in the sequencing data, repetitive sequence in the underlying genome, and heterozygosity. As a result, assembly errors are common. In the absence of a reference genome, these misassemblies may be identified by comparing the sequencing data to the assembly and looking for discrepancies between the two. Once identified, these misassemblies may be corrected, improving the quality of the assembled sequence. Although tools exist to identify and correct misassemblies using Illumina paired-end and mate-pair sequencing, no such tool yet exists that makes use of the long distance information of the large molecules provided by linked reads, such as those offered by the 10x Genomics Chromium platform. We have developed the tool Tigmint to address this gap. RESULTS: To demonstrate the effectiveness of Tigmint, we applied it to assemblies of a human genome using short reads assembled with ABySS 2.0 and other assemblers. Tigmint reduced the number of misassemblies identified by QUAST in the ABySS assembly by 216 (27%). While scaffolding with ARCS alone more than doubled the scaffold NGA50 of the assembly from 3 to 8 Mbp, the combination of Tigmint and ARCS improved the scaffold NGA50 of the assembly over five-fold to 16.4 Mbp. This notable improvement in contiguity highlights the utility of assembly correction in refining assemblies. We demonstrate the utility of Tigmint in correcting the assemblies of multiple tools, as well as in using Chromium reads to correct and scaffold assemblies of long single-molecule sequencing. CONCLUSIONS: Scaffolding an assembly that has been corrected with Tigmint yields a final assembly that is both more correct and substantially more contiguous than an assembly that has not been corrected. Using single-molecule sequencing in combination with linked reads enables a genome sequence assembly that achieves both a high sequence contiguity as well as high scaffold contiguity, a feat not currently achievable with either technology alone.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Cromossomos Humanos/genética , Genoma Humano , Genômica , Humanos , Nanoporos , Sequências Repetitivas de Ácido Nucleico
17.
Plant J ; 90(1): 189-203, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28090692

RESUMO

Over the last decade, extensive genetic and genomic resources have been developed for the conifer white spruce (Picea glauca, Pinaceae), which has one of the largest plant genomes (20 Gbp). Draft genome sequences of white spruce and other conifers have recently been produced, but dense genetic maps are needed to comprehend genome macrostructure, delineate regions involved in quantitative traits, complement functional genomic investigations, and assist the assembly of fragmented genomic sequences. A greatly expanded P. glauca composite linkage map was generated from a set of 1976 full-sib progeny, with the positioning of 8793 expressed genes. Regions with significant low or high gene density were identified. Gene family members tended to be mapped on the same chromosomes, with tandemly arrayed genes significantly biased towards specific functional classes. The map was integrated with transcriptome data surveyed across eight tissues. In total, 69 clusters of co-expressed and co-localising genes were identified. A high level of synteny was found with pine genetic maps, which should facilitate the transfer of structural information in the Pinaceae. Although the current white spruce genome sequence remains highly fragmented, dozens of scaffolds encompassing more than one mapped gene were identified. From these, the relationship between genetic and physical distances was examined and the genome-wide recombination rate was found to be much smaller than most estimates reported for angiosperm genomes. This gene linkage map shall assist the large-scale assembly of the next-generation white spruce genome sequence and provide a reference resource for the conifer genomics community.


Assuntos
Genoma de Planta/genética , Picea/genética , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , DNA de Plantas/genética , Genômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Sintenia
18.
Plant Physiol ; 175(2): 641-651, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28794260

RESUMO

Acetophenones are phenolic compounds involved in the resistance of white spruce (Picea glauca) against spruce budworm (Choristoneura fumiferiana), a major forest pest in North America. The acetophenones pungenol and piceol commonly accumulate in spruce foliage in the form of the corresponding glycosides, pungenin and picein. These glycosides appear to be inactive against the insect but can be cleaved by a spruce ß-glucosidase, PgßGLU-1, which releases the active aglycons. The reverse glycosylation reaction was hypothesized to involve a family 1 UDP-sugar dependent glycosyltransferase (UGT) to facilitate acetophenone accumulation in the plant. Metabolite and transcriptome profiling over a developmental time course of white spruce bud burst and shoot growth revealed two UGTs, PgUGT5 and PgUGT5b, that glycosylate pungenol. Recombinant PgUGT5b enzyme produced mostly pungenin, while PgUGT5 produced mostly isopungenin. Both UGTs also were active in vitro on select flavonoids. However, the context of transcript and metabolite accumulation did not support a biological role in flavonoid metabolism but correlated with the formation of pungenin in growing shoots. Transcript levels of PgUGT5b were higher than those of PgUGT5 in needles across different genotypes of white spruce. These results support a role of PgUGT5b in the biosynthesis of the glycosylated acetophenone pungenin in white spruce.


Assuntos
Acetofenonas/metabolismo , Glicosiltransferases/metabolismo , Insetos/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Traqueófitas/enzimologia , Animais , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Glicosiltransferases/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Traqueófitas/genética , Traqueófitas/imunologia , Traqueófitas/parasitologia , Açúcares de Uridina Difosfato/metabolismo
20.
Plant Cell Environ ; 41(3): 620-629, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314043

RESUMO

Acetophenones are phenolic metabolites of plant species. A metabolic route for the biosynthesis and release of 2 defence-related hydroxyacetophenones in white spruce (Picea glauca) was recently proposed to involve 3 phases: (a) biosynthesis of the acetophenone aglycons catalysed by a currently unknown set of enzymes, (b) formation and accumulation of the corresponding glycosides catalysed by a glucosyltransferase, and (c) release of the aglycons catalysed by a glucosylhydrolase (PgßGLU-1). We tested if this biosynthetic model is conserved across Pinaceae and land plant species. We assayed and surveyed the literature and sequence databases for possible patterns of the presence of the acetophenone aglycons piceol and pungenol and their glucosides, as well as sequences and expression of Pgßglu-1 orthologues. In the Pinaceae, the 3 phases of the biosynthetic model are present and differences in expression of Pgßglu-1 gene orthologues explain some of the interspecific variation in hydroxyacetophenones. The phylogenetic signal in the metabolite phenotypes was low across species of 6 plant divisions. Putative orthologues of PgßGLU-1 do not form a monophyletic group in species producing hydroxyacetophenones. The biosynthetic model for acetophenones appears to be conserved across Pinaceae, whereas convergent evolution has led to the production of acetophenone glucosides across land plants.


Assuntos
Acetofenonas/metabolismo , Pinaceae/metabolismo , Proteínas de Plantas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Glucosídeos/biossíntese , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Filogenia , Pinaceae/genética , Proteínas de Plantas/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA