Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 20(9): 6582-6589, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786938

RESUMO

Suspended specimens of 2D crystals and their heterostructures are required for a range of studies including transmission electron microscopy (TEM), optical transmission experiments, and nanomechanical testing. However, investigating the properties of laterally small 2D crystal specimens, including twisted bilayers and air-sensitive materials, has been held back by the difficulty of fabricating the necessary clean suspended samples. Here we present a scalable solution that allows clean free-standing specimens to be realized with 100% yield by dry-stamping atomically thin 2D stacks onto a specially developed adhesion-enhanced support grid. Using this new capability, we demonstrate atomic resolution imaging of defect structures in atomically thin CrBr3, a novel magnetic material that degrades in ambient conditions.

2.
Nano Lett ; 17(10): 5908-5913, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28809573

RESUMO

As a two-dimensional semimetal, graphene offers clear advantages for plasmonic applications over conventional metals, such as stronger optical field confinement, in situ tunability, and relatively low intrinsic losses. However, the operational frequencies at which plasmons can be excited in graphene are limited by the Fermi energy EF, which in practice can be controlled electrostatically only up to a few tenths of an electronvolt. Higher Fermi energies open the door to novel plasmonic devices with unprecedented capabilities, particularly at mid-infrared and shorter-wave infrared frequencies. In addition, this grants us a better understanding of the interaction physics of intrinsic graphene phonons with graphene plasmons. Here, we present FeCl3-intercalated graphene as a new plasmonic material with high stability under environmental conditions and carrier concentrations corresponding to EF > 1 eV. Near-field imaging of this highly doped form of graphene allows us to characterize plasmons, including their corresponding lifetimes, over a broad frequency range. For bilayer graphene, in contrast to the monolayer system, a phonon-induced dipole moment results in increased plasmon damping around the intrinsic phonon frequency. Strong coupling between intrinsic graphene phonons and plasmons is found, supported by ab initio calculations of the coupling strength, which are in good agreement with the experimental data.

3.
Nano Lett ; 11(9): 3912-6, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21851114

RESUMO

We demonstrate the possibility to selectively reduce insulating fluorinated graphene to conducting and semiconducting graphene by electron beam irradiation. Electron-irradiated fluorinated graphene microstructures show 7 orders of magnitude decrease in resistivity (from 1 TΩ to 100 kΩ), whereas nanostructures show a transport gap in the source-drain bias voltage. In this transport gap, electrons are localized, and charge transport is dominated by variable range hopping. Our findings demonstrate a step forward to all-graphene transparent and flexible electronics.

4.
Nat Nanotechnol ; 15(7): 592-597, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32451502

RESUMO

Van der Waals heterostructures form a unique class of layered artificial solids in which physical properties can be manipulated through controlled composition, order and relative rotation of adjacent atomic planes. Here we use atomic-resolution transmission electron microscopy to reveal the lattice reconstruction in twisted bilayers of the transition metal dichalcogenides, MoS2 and WS2. For twisted 3R bilayers, a tessellated pattern of mirror-reflected triangular 3R domains emerges, separated by a network of partial dislocations for twist angles θ < 2°. The electronic properties of these 3R domains, featuring layer-polarized conduction-band states caused by lack of both inversion and mirror symmetry, appear to be qualitatively different from those of 2H transition metal dichalcogenides. For twisted 2H bilayers, stable 2H domains dominate, with nuclei of a second metastable phase. This appears as a kagome-like pattern at θ ≈ 2°, transitioning at θ → 0 to a hexagonal array of screw dislocations separating large-area 2H domains. Tunnelling measurements show that such reconstruction creates strong piezoelectric textures, opening a new avenue for engineering of 2D material properties.

5.
Sci Rep ; 5: 16464, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26548711

RESUMO

The efficiency of flexible photovoltaic and organic light emitting devices is heavily dependent on the availability of flexible and transparent conductors with at least a similar workfunction to that of Indium Tin Oxide. Here we present the first study of the work function of large area (up to 9 cm(2)) FeCl3 intercalated graphene grown by chemical vapour deposition on Nickel, and demonstrate values as large as 5.1 eV. Upon intercalation, a charge density per graphene layer of 5 ⋅ 10(13) ± 5 ⋅ 10(12) cm(-2) is attained, making this material an attractive platform for the study of plasmonic excitations in the infrared wavelength spectrum of interest to the telecommunication industry. Finally, we demonstrate the potential of this material for flexible electronics in a transparent circuit on a polyethylene naphthalate substrate.

6.
Adv Mater ; 24(21): 2844-9, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22535615

RESUMO

Transparent conductors based on few-layer graphene (FLG) intercalated with ferric chloride (FeCl(3)) have an outstandingly low sheet resistance and high optical transparency. FeCl(3)-FLGs outperform the current limit of transparent conductors such as indium tin oxide, carbon-nanotube films, and doped graphene materials. This makes FeCl(3)-FLG materials the best transparent conductor for optoelectronic devices.


Assuntos
Grafite/química , Semicondutores , Cloretos/química , Condutividade Elétrica , Eletrodos , Compostos Férricos/química , Nanotubos de Carbono/química , Dispositivos Ópticos , Compostos de Estanho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA