Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
FEMS Yeast Res ; 14(8): 1133-46, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25263578

RESUMO

Aging determinants are asymmetrically distributed during cell division in S. cerevisiae, which leads to production of an immaculate, age-free daughter cell. During this process, damaged components are sequestered and retained in the mother cell, and higher functioning organelles and rejuvenating factors are transported to and/or enriched in the bud. Here, we will describe the key quality control mechanisms in budding yeast that contribute to asymmetric cell division of aging determinants including mitochondria, endoplasmic reticulum (ER), vacuoles, extrachromosomal rDNA circles (ERCs), and protein aggregates.


Assuntos
Divisão Celular Assimétrica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Transporte Biológico , Organelas/metabolismo
2.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335116

RESUMO

Mitochondrial dysfunction, or functional alteration, is found in many diseases and conditions, including neurodegenerative and musculoskeletal disorders, cancer, and normal aging. Here, an approach is described to assess mitochondrial function in living yeast cells at cellular and subcellular resolutions using a genetically encoded, minimally invasive, ratiometric biosensor. The biosensor, mitochondria-targeted HyPer7 (mtHyPer7), detects hydrogen peroxide (H2O2) in mitochondria. It consists of a mitochondrial signal sequence fused to a circularly permuted fluorescent protein and the H2O2-responsive domain of a bacterial OxyR protein. The biosensor is generated and integrated into the yeast genome using a CRISPR-Cas9 marker-free system, for more consistent expression compared to plasmid-borne constructs. mtHyPer7 is quantitatively targeted to mitochondria, has no detectable effect on yeast growth rate or mitochondrial morphology, and provides a quantitative readout for mitochondrial H2O2 under normal growth conditions and upon exposure to oxidative stress. This protocol explains how to optimize imaging conditions using a spinning-disk confocal microscope system and perform quantitative analysis using freely available software. These tools make it possible to collect rich spatiotemporal information on mitochondria both within cells and among cells in a population. Moreover, the workflow described here can be used to validate other biosensors.


Assuntos
Técnicas Biossensoriais , Peróxidos , Peróxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais/métodos
3.
Methods Mol Biol ; 2364: 53-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34542848

RESUMO

Although budding yeast, Saccharomyces cerevisiae, is widely used as a model organism in biological research, studying cell biology in yeast was hindered due to its small size, rounded morphology, and cell wall. However, with improved techniques, researchers can acquire high-resolution images and carry out rapid multidimensional analysis of a yeast cell. As a result, imaging in yeast has emerged as an important tool to study cytoskeletal organization, function, and dynamics. This chapter describes techniques and approaches for visualizing the actin cytoskeleton in live yeast cells.


Assuntos
Saccharomyces cerevisiae , Citoesqueleto de Actina , Actinas , Divisão Celular , Proteínas de Saccharomyces cerevisiae
4.
Methods Mol Biol ; 2364: 81-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34542849

RESUMO

Budding yeast, Saccharomyces cerevisiae, is an appealing model organism to study the organization and function of the actin cytoskeleton. With the advent of techniques to perform high-resolution, multidimensional analysis of the yeast cell, imaging of yeast has emerged as an important tool for research on the cytoskeleton. This chapter describes techniques and approaches for visualizing the actin cytoskeleton in fixed yeast cells with wide-field and super-resolution fluorescence microscopy.


Assuntos
Saccharomyces cerevisiae , Citoesqueleto de Actina , Actinas , Citoesqueleto , Microscopia de Fluorescência
5.
Front Cell Dev Biol ; 10: 852021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281095

RESUMO

Lipid droplets (LDs) have emerged not just as storage sites for lipids but as central regulators of metabolism and organelle quality control. These critical functions are achieved, in part, at membrane contact sites (MCS) between LDs and other organelles. MCS are sites of transfer of cellular constituents to or from LDs for energy mobilization in response to nutrient limitations, as well as LD biogenesis, expansion and autophagy. Here, we describe recent findings on the mechanisms underlying the formation and function of MCS between LDs and mitochondria, ER and lysosomes/vacuoles and the role of the cytoskeleton in promoting LD MCS through its function in LD movement and distribution in response to environmental cues.

6.
Nat Commun ; 13(1): 2706, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577788

RESUMO

In yeast, actin cables are F-actin bundles that are essential for cell division through their function as tracks for cargo movement from mother to daughter cell. Actin cables also affect yeast lifespan by promoting transport and inheritance of higher-functioning mitochondria to daughter cells. Here, we report that actin cable stability declines with age. Our genome-wide screen for genes that affect actin cable stability identified the open reading frame YKL075C. Deletion of YKL075C results in increases in actin cable stability and abundance, mitochondrial fitness, and replicative lifespan. Transcriptome analysis revealed a role for YKL075C in regulating branched-chain amino acid (BCAA) metabolism. Consistent with this, modulation of BCAA metabolism or decreasing leucine levels promotes actin cable stability and function in mitochondrial quality control. Our studies support a role for actin stability in yeast lifespan, and demonstrate that this process is controlled by BCAA and a previously uncharacterized ORF YKL075C, which we refer to as actin, aging and nutrient modulator protein 1 (AAN1).


Assuntos
Citoesqueleto de Actina , Longevidade , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Longevidade/genética , Mitocôndrias/metabolismo , Nutrientes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Autophagy ; 17(9): 2363-2383, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33021864

RESUMO

Our previous studies reveal a mechanism for lipid droplet (LD)-mediated proteostasis in the endoplasmic reticulum (ER) whereby unfolded proteins that accumulate in the ER in response to lipid imbalance-induced ER stress are removed by LDs and degraded by microlipophagy (µLP), autophagosome-independent LD uptake into the vacuole (the yeast lysosome). Here, we show that dithiothreitol- or tunicamycin-induced ER stress also induces µLP and identify an unexpected role for vacuolar membrane dynamics in this process. All stressors studied induce vacuolar fragmentation prior to µLP. Moreover, during µLP, fragmented vacuoles fuse to form cup-shaped structures that encapsulate and ultimately take up LDs. Our studies also indicate that proteins of the endosome sorting complexes required for transport (ESCRT) are upregulated, required for µLP, and recruited to LDs, vacuolar membranes, and sites of vacuolar membrane scission during µLP. We identify possible target proteins for LD-mediated ER proteostasis. Our live-cell imaging studies reveal that one potential target (Nup159) localizes to punctate structures that colocalizes with LDs 1) during movement from ER membranes to the cytosol, 2) during microautophagic uptake into vacuoles, and 3) within the vacuolar lumen. Finally, we find that mutations that inhibit LD biogenesis, homotypic vacuolar membrane fusion or ESCRT function inhibit stress-induced autophagy of Nup159 and other ER proteins. Thus, we have obtained the first direct evidence that LDs and µLP can mediate ER stress-induced ER proteostasis, and identified direct roles for ESCRT and vacuolar membrane fusion in that process.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Autofagia , Gotículas Lipídicas/metabolismo , Microautofagia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteostase , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Vacúolos/metabolismo
8.
Trends Cell Biol ; 13(9): 472-7, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12946626

RESUMO

The actin-driven process of cytoplasmic streaming in plant cells is widely believed to be the earliest documented example of cytoskeleton-driven organelle movement. In the decades since these seminal findings, two mechanisms of actin-based intracellular movement have been identified in multiple cell types: one is myosin dependent and the other is dependent upon the Arp2/3 complex for actin nucleation and polymerization. Here, we describe mechanisms of force generation and directed movement that use the actin cytoskeleton, as well as those that target actin-dependent force generators to different subcellular compartments.


Assuntos
Actinas/metabolismo , Proteínas Motores Moleculares/metabolismo , Organelas/fisiologia , Animais , Transporte Biológico , Modelos Moleculares , Miosina Tipo V/metabolismo
9.
Mol Biol Cell ; 30(24): 2943-2952, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31599702

RESUMO

Loss of mitochondrial DNA (mtDNA) results in loss of mitochondrial respiratory activity, checkpoint-regulated inhibition of cell cycle progression, defects in growth, and nuclear genome instability. However, after several generations, yeast cells can adapt to the loss of mtDNA. During this adaptation, rho0 cells, which have no mtDNA, exhibit increased growth rates and nuclear genome stabilization. Here, we report that an immediate response to loss of mtDNA is a decrease in replicative lifespan (RLS). Moreover, we find that adapted rho0 cells bypass the mtDNA inheritance checkpoint, exhibit increased mitochondrial function, and undergo an increase in RLS as they adapt to the loss of mtDNA. Transcriptome analysis reveals that metabolic reprogramming to compensate for defects in mitochondrial function is an early event during adaptation and that up-regulation of stress response genes occurs later in the adaptation process. We also find that specific subtelomeric genes are silenced during adaptation to loss of mtDNA. Moreover, we find that deletion of SIR3, a subtelomeric gene silencing protein, inhibits silencing of subtelomeric genes associated with adaptation to loss of mtDNA, as well as adaptation-associated increases in mitochondrial function and RLS extension.


Assuntos
Proliferação de Células/genética , Senescência Celular/fisiologia , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Ciclo Celular/genética , Divisão Celular/genética , Senescência Celular/genética , Replicação do DNA/genética , DNA Mitocondrial/fisiologia , Instabilidade Genômica/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo
10.
Mol Biol Cell ; 16(11): 5094-102, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16107558

RESUMO

Although the Arp2/3 complex localizes to the leading edge of motile cells, endocytic structures, and mitochondria in budding yeast, the mechanism for targeting the Arp2/3 complex to different regions in the cell is not well understood. We find that Jsn1p, a member of the PUF family of proteins, facilitates association of Arp2/3 complex to yeast mitochondria. Jsn1p localizes to punctate structures that align along mitochondria, cofractionates with a mitochondrial marker protein during subcellular fractionation, and is both protease sensitive and carbonate extractable in isolated mitochondria. Thus, Jsn1p is a peripheral membrane protein that is associated with the outer leaflet of the mitochondrial outer membrane. Jsn1p colocalized and coimmunoprecipitated with mitochondria-associated Arc18p-GFP, and purified Arp2/3 complex bound to isolated TAP-tagged Jsn1p. Moreover, deletion of JSN1 reduces the amount of Arc18p-GFP that colocalizes and is recovered with mitochondria twofold, and jsn1Delta cells exhibited defects in mitochondrial morphology and motility similar to those observed in Arp2/3 complex mutants. Thus, Jsn1p has physical interactions with mitochondria-associated Arp2/3 complex and contributes to physical and functional association of the Arp2/3 complex with mitochondria.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Actinas/metabolismo , Deleção de Genes , Mitocôndrias/genética , Mitocôndrias/fisiologia , Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales
11.
PLoS One ; 13(4): e0196632, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698455

RESUMO

Isolated mitochondria are widely used to study the function of the organelle. Typically, mitochondria are prepared using differential centrifugation alone or in conjunction with density gradient ultracentrifugation. However, mitochondria isolated using differential centrifugation contain membrane or organelle contaminants, and further purification of crude mitochondria by density gradient ultracentrifugation requires large amounts of starting material, and is time-consuming. Mitochondria have also been isolated by irreversible binding to antibody-coated magnetic beads. We developed a method to prepare mitochondria from budding yeast that overcomes many of the limitations of other methods. Mitochondria are tagged by insertion of 6 histidines (6xHis) into the TOM70 (Translocase of outer membrane 70) gene at its chromosomal locus, isolated using Ni-NTA (nickel (II) nitrilotriacetic acid) paramagnetic beads and released from the magnetic beads by washing with imidazole. Mitochondria prepared using this method contain fewer contaminants, and are similar in ultrastructure as well as protein import and cytochrome c oxidase complex activity compared to mitochondria isolated by differential centrifugation. Moreover, this isolation method is amenable to small samples, faster than purification by differential and density gradient centrifugation, and more cost-effective than purification using antibody-coated magnetic beads. Importantly, this method can be applied to any cell type where the genetic modification can be introduced by CRISPR or other methods.


Assuntos
Cromatografia de Afinidade/métodos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Histidina/genética , Histidina/metabolismo , Magnetismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Biochim Biophys Acta ; 1763(5-6): 450-62, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16624426

RESUMO

Interactions between mitochondria and the cytoskeleton are essential for normal mitochondrial morphology, motility and distribution. While microtubules and their motors have been established as important factors for mitochondrial transport, emerging evidence indicates that mitochondria interact with the actin cytoskeleton in many cell types. In certain fungi, such as the budding yeast and Aspergillus, or in plant cells mitochondrial motility is largely actin-based. Even in systems such as neurons, where microtubules are the primary means of long-distance mitochondrial transport, the actin cytoskeleton is required for short-distance mitochondrial movements and for immobilization of the organelle at the cell cortex. The actin cytoskeleton is also involved in the immobilization of mitochondria at the cortex in cultured tobacco cells and in budding yeast. While the exact nature of these immobilizations is not known, they may be important for retaining mitochondria at sites of high ATP utilization or at other cellular locations where they are needed. Recent findings also indicate that mutations in actin or actin-binding proteins can influence mitochondrial pathways leading to cell death. Thus, mitochondria-actin interactions contribute to apoptosis.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Mitocôndrias/metabolismo , Animais , Apoptose , Plantas/metabolismo , Saccharomycetales/citologia , Saccharomycetales/metabolismo
13.
Mol Biol Cell ; 15(9): 3994-4002, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15215313

RESUMO

Two actin-dependent force generators contribute to mitochondrial inheritance: Arp2/3 complex and the myosin V Myo2p (together with its Rab-like binding partner Ypt11p). We found that deletion of YPT11, reduction of the length of the Myo2p lever arm (myo2-Delta6IQ), or deletion of MYO4 (the other yeast myosin V), had no effect on mitochondrial morphology, colocalization of mitochondria with actin cables, or the velocity of bud-directed mitochondrial movement. In contrast, retention of mitochondria in the bud was compromised in YPT11 and MYO2 mutants. Retention of mitochondria in the bud tip of wild-type cells results in a 60% decrease in mitochondrial movement in buds compared with mother cells. In ypt11Delta mutants, however, the level of mitochondrial motility in buds was similar to that observed in mother cells. Moreover, the myo2-66 mutant, which carries a temperature-sensitive mutation in the Myo2p motor domain, exhibited a 55% decrease in accumulation of mitochondria in the bud tip, and an increase in accumulation of mitochondria at the retention site in the mother cell after shift to restrictive temperatures. Finally, destabilization of actin cables and the resulting delocalization of Myo2p from the bud tip had no significant effect on the accumulation of mitochondria in the bud tip.


Assuntos
Mitocôndrias/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Actinas/metabolismo , Sequência de Bases , Divisão Celular , DNA Fúngico/genética , Deleção de Genes , Genes Fúngicos , Mitocôndrias/ultraestrutura , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rab de Ligação ao GTP/genética
14.
Mol Biol Cell ; 14(11): 4618-27, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-13679517

RESUMO

Previous studies indicate that two proteins, Mmm1p and Mdm10p, are required to link mitochondria to the actin cytoskeleton of yeast and for actin-based control of mitochondrial movement, inheritance and morphology. Both proteins are integral mitochondrial outer membrane proteins. Mmm1p localizes to punctate structures in close proximity to mitochondrial DNA (mtDNA) nucleoids. We found that Mmm1p and Mdm10p exist in a complex with Mdm12p, another integral mitochondrial outer membrane protein required for mitochondrial morphology and inheritance. This interpretation is based on observations that 1) Mdm10p and Mdm12p showed the same localization as Mmm1p; 2) Mdm12p, like Mdm10p and Mmm1p, was required for mitochondrial motility; and 3) all three proteins coimmunoprecipitated with each other. Moreover, Mdm10p localized to mitochondria in the absence of the other subunits. In contrast, deletion of MMM1 resulted in mislocalization of Mdm12p, and deletion of MDM12 caused mislocalization of Mmm1p. Finally, we observed a reciprocal relationship between the Mdm10p/Mdm12p/Mmm1p complex and mtDNA. Deletion of any one of the subunits resulted in loss of mtDNA or defects in mtDNA nucleoid maintenance. Conversely, deletion of mtDNA affected mitochondrial motility: mitochondria in cells without mtDNA move 2-3 times faster than mitochondria in cells with mtDNA. These observations support a model in which the Mdm10p/Mdm12p/Mmm1p complex links the minimum heritable unit of mitochondria (mtDNA and mitochondrial outer and inner membranes) to the cytoskeletal system that drives transfer of that unit from mother to daughter cells.


Assuntos
DNA Mitocondrial/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoesqueleto/metabolismo , DNA Mitocondrial/genética , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/genética , Mutação , Ligação Proteica/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Front Cell Dev Biol ; 5: 120, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29359129

RESUMO

Tethers that link mitochondria to other organelles are critical for lipid and calcium transport as well as mitochondrial genome replication and fission of the organelle. Here, we review recent advances in the characterization of interorganellar mitochondrial tethers in the budding yeast, Saccharomyces cerevisiae. We specifically focus on evidence for a role for mitochondrial tethers that anchor mitochondria to specific regions within yeast cells. These tethering events contribute to two processes that are critical for normal replicative lifespan: inheritance of fitter mitochondria by daughter cells, and retention of a small pool of higher-functioning mitochondria in mother cells. Since asymmetric inheritance of mitochondria also occurs in human mammary stem-like cells, it is possible that mechanisms underlying mitochondrial segregation in yeast also operate in other cell types.

16.
Methods Mol Biol ; 1365: 63-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26498779

RESUMO

The budding yeast Saccharomyces cerevisiae is widely used as a model system to study the organization and function of the cytoskeleton. In the past, its small size, rounded shape, and rigid cell wall created obstacles to explore the cell biology of this model eukaryote. It is now possible to acquire and analyze high-resolution and super-resolution multidimensional images of the yeast cell. As a result, imaging of yeast has emerged as an important tool in eukaryotic cell biology. This chapter describes labeling methods and optical approaches for visualizing the cytoskeleton and interactions of the actin cytoskeleton with mitochondria in fixed yeast cells using wide-field and super-resolution fluorescence microscopy.


Assuntos
Citoesqueleto de Actina/metabolismo , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/citologia , Adesão Celular/efeitos dos fármacos , Núcleo Celular/genética , Parede Celular/metabolismo , DNA Mitocondrial/metabolismo , Imunofluorescência , Corantes Fluorescentes/metabolismo , Hidrolases/metabolismo , Faloidina/metabolismo , Polilisina/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Esferoplastos/citologia , Coloração e Rotulagem
17.
Methods Mol Biol ; 1365: 25-62, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26498778

RESUMO

Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images.


Assuntos
Citoesqueleto de Actina/metabolismo , Mitocôndrias/metabolismo , Imagem Molecular/métodos , Saccharomycetales/citologia , Acetatos/farmacologia , Cromossomos Fúngicos/genética , Corantes/metabolismo , Loci Gênicos/genética , Vetores Genéticos/genética , Integrases/metabolismo , Movimento , Imagem Óptica , Reação em Cadeia da Polimerase , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Análise de Sequência , Transformação Genética/efeitos dos fármacos
18.
Mol Biol Cell ; 27(5): 776-87, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26764088

RESUMO

Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss of fusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud.


Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Saccharomyces cerevisiae/citologia , DNA Mitocondrial/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Fotodegradação , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Gene ; 354: 28-36, 2005 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-15979253

RESUMO

Mitochondria are essential organelles that perform fundamental cellular functions including aerobic energy mobilization, fatty acid oxidation, amino acid metabolism, heme biosynthesis and apoptosis. Mitochondria cannot be synthesized de novo. Therefore, the inheritance of this organelle is an essential part of the cell cycle; that is, daughter cells that do not inherit mitochondria will not survive. The budding yeast, Saccharomyces cerevisiae, is a facultative aerobe that can tolerate mitochondrial mutations that would be lethal in other organisms. Therefore, yeast has been used extensively to study inheritance and segregation of mitochondria. As a result, much of what we know regarding mitochondrial inheritance has been uncovered using yeast as a model system. Here, we describe the latest developments in mitochondrial motility and inheritance.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Citrato (si)-Sintase/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tropomiosina/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
20.
Trends Cell Biol ; 24(1): 53-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23932848

RESUMO

Eukaryotic cells compartmentalize their biochemical processes within organelles, which have specific functions that must be maintained for overall cellular health. As the site of aerobic energy mobilization and essential biosynthetic activities, mitochondria are critical for cell survival and proliferation. Here, we describe mechanisms to control the quality and quantity of mitochondria within cells with an emphasis on findings from the budding yeast Saccharomyces cerevisiae. We also describe how mitochondrial quality and quantity control systems that operate during cell division affect lifespan and cell cycle progression.


Assuntos
Mitocôndrias/fisiologia , Saccharomyces cerevisiae/citologia , Animais , Divisão Celular Assimétrica , Transporte Biológico , Pontos de Checagem do Ciclo Celular , Citoesqueleto/fisiologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA